Toggle light / dark theme

Xiang-Dong Fu, PhD, has never been more excited about something in his entire career. He has long studied the basic biology of RNA, a genetic cousin of DNA, and the proteins that bind it. But a single discovery has launched Fu into a completely new field: neuroscience.

For decades, Fu and his team at University of California San Diego School of Medicine studied a protein called PTB, which is well known for binding RNA and influencing which genes are turned “on” or “off” in a cell. To study the role of a protein like PTB, scientists often manipulate cells to reduce the amount of that protein, and then watch to see what happens.


But then he noticed something odd after a couple of weeks — there were very few fibroblasts left. Almost the whole dish was instead filled with neurons.

In this serendipitous way, the team discovered that inhibiting or deleting just a single gene, the gene that encodes PTB, transforms several types of mouse cells directly into neurons.

As of December 4, 2019, 565 people from 41 countries have gone into space. That’s it. 565 out of more than 7 billion of us currently on this planet. And that’s using the definition of space travel to include any flight over 62 miles or about 100 kilometers.

Many of these space travelers are, of course, NASA astronauts. That means they went through a rigorous application and training process. So, what exactly does it take to be an astronaut?

To be considered for the NASA astronaut program is you must be a U.S. citizen. Dual citizenship is okay.

A team of researchers affiliated with several institutions in the U.S. has conducted an analysis of the system-wide costs and benefits of using engineered nanomaterials (ENMs) on crop-based agriculture. In their paper published in the journal Nature Nanotechnology, the group describes their analysis and what they found.

As scientists have come to realize that vast improvements in agricultural practices are needed if future generations are going to be able to grow enough food to feed the expected rise in population. They have increasingly turned to technology-based solutions, rather than just looking for biological advances. One such approach involves the design and use of ENMs on crops as a means of improving pest control and fertilizer efficiency. Prior research has shown that some ENMs can be mixed into the soil as a form of pest control or as a means of diverting fertilizer directly to the roots, reducing the amount required. In a similar vein, some prior research has shown that ENMs can be applied to parts of the plant above-ground as a means of pest control. What has been less well studied, the researchers note, is the overall impact of ENMs on crops and the environment.

Windows 10 has been around for five years now, and although Microsoft has introduced a number of big changes over the years, the Start menu doesn’t look hugely different from how it was when the OS debuted back in 2015.

That’s all about to change though. Microsoft is planning to overhaul the menu, and it’s released a number of new images to give us a clearer idea of how it will look.

Staging Area

The engineers say four reactors could give enough energy for a six-person crew to live on Mars, and they’re hoping to use the Moon as a testing ground.

“On the moon, you’re close to home,” NASA engineer Michelle Rucker told C&EN, “so if something fails, it’s a fairly close trip to get back home, whereas on Mars, your system better be working.”

A weakness of lasers integrated onto microchips is how they can each generate only one color of light at a time. Now researchers have come up with a simple integrated way to help these lasers fire multiple colors, a new study finds.

When it comes to data and telecommunications applications, integrated lasers would ideally generate multiple frequencies of light to boost how much information they could transmit. One way to achieve this end is an “optical frequency comb,” which converts a pulse of light from a single laser into a series of pulses equally spaced in time and made up of different, equally spaced frequencies of light.

Generating combs long required equipment that was expensive, bulky, complex, and delicate. However, in the past decade or so, researchers began developing miniature and integrated comb systems. These microcombs passed light from a laser through a waveguide to a microresonator—a ring in which circulating light could become a soliton, a kind of wave that preserves its shape as it travels. When solitons left these microresonators, they each did so as very stable, regular streams of pulses—in other words, as frequency combs.