SPOCK looks into the future — and sees which distant worlds will survive.
July 13, 2020—Researchers at Columbia Engineering and Montana State University report today that they have found that placing sufficient strain in a 2-D material—tungsten diselenide (WSe2)—creates localized states that can yield single-photon emitters. Using sophisticated optical microscopy techniques developed at Columbia over the past three years, the team was able to directly image these states for the first time, revealing that even at room temperature they are highly tunable and act as quantum dots, tightly confined pieces of semiconductors that emit light.
“Our discovery is very exciting, because it means we can now position a single-photon emitter wherever we want, and tune its properties, such as the color of the emitted photon, simply by bending or straining the material at a specific location,” says James Schuck, associate professor of mechanical engineering, who co-led the study published today by Nature Nanotechnology. “Knowing just where and how to tune the single-photon emitter is essential to creating quantum optical circuitry for use in quantum computers, or even in so-called ‘quantum’ simulators that mimic physical phenomena far too complex to model with today’s computers.”
Developing quantum technologies such as quantum computers and quantum sensors is a rapidly developing field of research as researchers figure out how to use the unique properties of quantum physics to create devices that can be much more efficient, faster, and more sensitive than existing technologies. For instance, quantum information—think encrypted messages—would be much more secure.
I think so.
Will augs like in the video game Deus Ex ever be possible? Why or why not? If one day they are, what are the implications? We have a long way to go, and the more we try to control our system, the less we will have available to us in the future.
DARPA Research (mind controlled, robotic, prosthetic arm) ► https://www.youtube.com/watch?v=xynE-43trQg
Comet C/2020 F3 (NEOWISE), a recently-discovered visitor from distant parts of our Solar System, is putting on a spectacular nighttime display.
Larsen & Toubro has finished the construction of 3,800-tonne ITER cryostat — the world’s largest steel vacuum chamber and a critical part of the ITER machine — for world’s first fusion reactor as a source of endless clean energy. The company says that the final components are ready to ship to the project site in France and here is what it means for the future of humanity.
A fleet of balloons launched by Google’s sister firm Loon will provide 4G access to remote areas of Kenya.
Just over a month after announcing its latest generation Ampere A100 GPU, Nvidia said this week that the powerhouse processor system is now available on Google Cloud.
The A100 Accelerator Optimized VM A2 instance family is designed for enormous artificial intelligence workloads and data analytics. Nvidia says users can expect substantive improvements over previous processing models, in this instance up to a 20-fold performance boost. The system maxes out at 19.5 TFLOPS for single-precision performance and 156 TFLOPS for AI and high performance computing applications demanding TensorFloat 32 operations.
The Nvidia Ampere is the largest 7 nanometer chip ever constructed. It sports 54 billion transistors and offers innovative features such as multi-instance GPU, automatic mixed precision, an NVLink that doubles GPU-to-GPU direct bandwidth and faster memory reaching 1.6 terabytes per second.
What is more powerful than suction cup and even a vacuum pump, but was not invented by humans?
Answer: a gecko’s foot. NASA has decided to copy the lizard’s incredible gripping technology, which relies on electrostatic attractions, in its Gecko Gripper robot. This is not coming from an internet troll trying to sell car insurance. The space agency partnered with OnRobot, which specializes in finger-like robotic grippers, to create a device that can (so far) lift 14 pounds. The radiation-resistant pads could literally mean a huge step forward for getting around in space.
Researchers from the Peter the Great St. Petersburg Polytechnic University (SPbPU) have discovered and theoretically explained a new physical effect: amplitude of mechanical vibrations can grow without external influence. The scientific group offered their explanation on how to eliminate the Fermi-Pasta-Ulam-Tsingou paradox.
The scientists of SPbPU explained it using a simple example: to rock a swing, you have to keep pushing it. It is generally believed that it is impossible to achieve oscillatory resonance without constant external influence.
However, the scientific group of the Higher School of Theoretical Mechanics, Institute of Applied Mathematics and Mechanics SPbPU discovered a new physical phenomenon of ‘ballistic resonance,” where mechanical oscillations can be excited only due to internal thermal resources of the system.
Astrophysicists have devised a clever way to count up the photons in space, stretching back to the cosmos’ adolescence.