Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Two distinct microglia populations linked to autism-like and depression-like behaviors in mice

The anterior insular cortex (aIC) is an important brain region known to contribute to the regulation of emotions, the integration of bodily sensations, decision-making and some other functions. Past studies have linked this brain region to some neuropsychiatric disorders characterized by unusual patterns of thinking and behavior, including autism spectrum disorder (ASD) and depression.

However, the precise cellular and neurobiological processes via which the aIC might contribute to ASD and have not yet been clearly elucidated. Some neuroscientists have been exploring the possibility that , that play a role in eliminating damaged cells and pathogens, could play a role in some of the behaviors linked with these two neuropsychiatric disorders.

Researchers at Tsinghua University recently carried out a study involving mice, aimed at investigating the possibility that microglia in the aIC play a part in some of the symptoms of ASD and depression. Their paper, published in Molecular Psychiatry, identifies two distinct subtypes of microglia that appear to contribute to autism-like and depression-like behavior in mice.

Scientists create realistic brain-wide connection maps through digital modeling

EPFL researchers have developed a powerful method to generate brain-wide, biologically realistic wiring maps of the mouse brain. Their approach bridges experimental data with mathematical and computational modeling to simulate how neurons connect across the entire brain.

The study is published in the journal Nature Communications.

One of neuroscience’s greatest challenges is understanding how the brain is wired. Even with modern imaging tools, it has been a challenge to create detailed maps that show how the brain’s billions of cells () connect, not just with their local “neighbors” but also to other, more distant cells in the brain.

How the distinctive folds in the brain cortex, seen in humans, whales, other animals, form

One of the defining features of humans is our brain’s remarkable capacity for language, planning, memory, creativity, and more. These abilities stem not just from our large brain size, but also from the folded structure of the brain’s outer layer, the cerebral cortex.

A new study, published in the journal Nature Communications, offers insight into how these wrinkles form, pointing to a range of contributing factors—including the number of early-stage , how they migrate during development, and the specific types of cells involved.

These findings may help guide future research into brain development, evolution, and health.

Interface-controlled antiferromagnetic tunnel junctions offer new path for next-gen spintronics

A research team led by Prof. Shao Dingfu at the Institute of Solid State Physics, the Hefei Institutes of Physical Science of the Chinese Academy of Sciences, has unveiled a new mechanism for achieving strong spin polarization using antiferromagnetic metal interfaces.

Their findings, published in Newton recently, propose a third prototype of antiferromagnetic tunnel junction (AFMTJ), paving the way for faster and denser spintronic devices.

As electronics demand smaller size, higher speed, and lower energy use, spintronics—using both electron charge and spin—offers a strong alternative to traditional devices. Magnetic tunnel junctions (MTJs), a key spintronics technology, are already used in but face limits due to slow response speeds and unwanted magnetic fields from their ferromagnetic parts.

Toward new physics: First-ever double crystal channeling observed

Might two bent crystals pave the way to finding new physics? The Standard Model of particle physics describes our world at its smallest scales exceptionally well. However, it leaves some important questions unanswered, such as the imbalance between matter and antimatter, the existence of dark matter and other mysteries.

One method to find “new physics” beyond the Standard Model is to measure the properties of different particles as precisely as possible and then compare measurement with theory. If the two don’t agree, it might hint at new physics and let us slowly piece together a fuller picture of our universe—like pieces of a jigsaw puzzle.

An example of particles that physicists wish to study more closely are “charm baryons” such as the “Lambda-c-plus” (Λc+) which is a heavier “cousin” of the proton, consisting of three quarks: one up, one down and one charm. These particles decay after less than a trillionth of a second (10-13 s), which makes any measurement of their properties a race against time. Some of their properties have not yet been measured to high precision, leaving room for new physics to hide.

Optoelectronics research could bring holograms to your smartphone and closer to everyday use

New research from the University of St Andrews paves the way for holographic technology, with the potential to transform smart devices, communication, gaming and entertainment.

In a study published in Light: Science & Applications, researchers from the School of Physics and Astronomy created a new optoelectronic device from the combined use of holographic metasurfaces (HMs) and (OLEDs).

Until now, holograms have been created using lasers. However, researchers have found that using OLEDs and HMs gives a simpler and more compact approach that is potentially cheaper and easier to apply, overcoming the main barriers to hologram technology being used more widely.

AI tool targets RNA structures to unravel secrets of the dark genome

We mapped the human genome decades ago, but most of it is still a black box. Now, UNSW scientists have developed a tool to peer inside and what they find could reshape how we think about disease.

Your genome is the genetic map of you, and we understand almost none of it.

Our handle on the bits of the genome that tell the body how to do things (“make eyes blue,” “build ,” “give this person sickle cell anemia”) is OK, but there are vast areas of the genome that don’t appear to do anything.

Antiferromagnets outperform ferromagnets in ultrafast, energy-efficient memory operations

Advances in spintronics have led to the practical use of magnetoresistive random-access memory (MRAM), a non-volatile memory technology that supports energy-efficient semiconductor integrated circuits.

Recently, antiferromagnets— with no net magnetization—have attracted growing attention as promising complements to conventional ferromagnets. While their properties have been extensively studied, clear demonstrations of their technological advantages have remained elusive.

Now, researchers from Tohoku University, the National Institute for Materials Science (NIMS), and the Japan Atomic Energy Agency (JAEA) have provided the first compelling evidence of the unique benefits of antiferromagnets.

“Heavy” Electrons Hold the Key to a New Type of Quantum Computer

Discovery of Planckian time limit offers new opportunities for quantum technologies. A collaborative team of researchers in Japan has identified “heavy fermions”—electrons with greatly increased effective mass—that display quantum entanglement controlled by Planckian time, the fundamental unit of

/* */