New images taken by the Gemini North telescope and the Hubble Space Telescope have captured Jupiter in visible, infrared and ultraviolet light, revealing unique atmospheric features of the gas giant in detail. These include superstorms, cyclones and the Great Red Spot.
Not sure how novel.
Paolo Garagnani and colleagues, in collaboration with several research groups in Italy and a research team led by Patrick Descombes at Nestlé Research in Lausanne, Switzerland, recruited 81 semi-supercentenarians (those aged 105 years or older) and supercentenarians (those aged 110 years or older) from across the Italian peninsula. They compared these with 36 healthy people matched from the same region who were an average age of 68 years old.
They took blood samples from all the participants and conducted whole-genome sequencing to look for differences in the genes between the older and younger group. They then cross-checked their new results with genetic data from another previously published study which analyzed 333 Italian people aged over 100 years old and 358 people aged around 60 years old.
A gene therapy that makes use of an unlikely helper, the AIDS virus, gave a working immune system to 48 babies and toddlers who were born without one, doctors reported Tuesday.
Results show that all but two of the 50 children who were given the experimental therapy in a study now have healthy germ-fighting abilities.
“We’re taking what otherwise would have been a fatal disease” and healing most of these children with a single treatment, said study leader Dr. Donald Kohn of UCLA Mattel Children’s Hospital.
Structure And Function Of Proteins
Posted in futurism
This video explains the structure and function of proteins.
Thank You For Watching.
Please Like And Subscribe to Our Channel: https://www.youtube.com/EasyPeasyLearning.
Like Our Facebook Page: https://www.facebook.com/learningeasypeasy/
Join Our Facebook Group: https://www.facebook.com/groups/460057834950033
Support Our Channel: https://www.patreon.com/supereasypeasy
New observations and simulations show that jets of high-energy particles emitted from the central massive black hole in the brightest galaxy in galaxy clusters can be used to map the structure of invisible inter-cluster magnetic fields. These findings provide astronomers with a new tool for investigating previously unexplored aspects of clusters of galaxies.
As clusters of galaxies grow through collisions with surrounding matter, they create bow shocks and wakes in their dilute plasma. The plasma motion induced by these activities can drape intra-cluster magnetic layers, forming virtual walls of magnetic force. These magnetic layers, however, can only be observed indirectly when something interacts with them. Because it is simply difficult to identify such interactions, the nature of intra-cluster magnetic fields remains poorly understood. A new approach to map/characterize magnetic layers is highly desired.
Microalgae 3D printed onto bacterial cellulose allows for a new oxygen-producing material.
Toyota’s first car in its new Beyond Zero brand will be the bZ4X electric SUV. Look for it before the end of 2022.
Car companies love to create new brands. The Japanese Big Three gave us Lexus, Infiniti, and Acura 30+ years ago when they wanted to go upmarket with high profit premium cars. People who would never consider dropping $30000 on a Toyota were happy to spend double that on a Lexus. Such is the power of branding.
In the electric car era, several companies have have created new brands for their battery powered cars. Mercedes has its EQ division, Volkswagen its ID branded cars, BMW uses a simple “i,” while Hyundai is employing the Ioniq moniker for its battery electric cars. While all those companies have been ramping up EV offerings, Toyota has been largely content to hang out in the background and sell variations of its Synergy hybrid powertrain, cars it often misleadingly characterizes as “self charging electric cars.”
Cosmologists love universe simulations. Even models covering hundreds of millions of light years can be useful for understanding fundamental aspects of cosmology and the early universe. There’s just one problem – they’re extremely computationally intensive. A 500 million light year swath of the universe could take more than 3 weeks to simulate… Now, scientists led by Yin Li at the Flatiron Institute have developed a way to run these cosmically huge models 1000 times faster. That 500 million year light year swath could then be simulated in 36 minutes.
Older algorithms took such a long time in part because of a tradeoff. Existing models could either simulate a very detailed, very small slice of the cosmos or a vaguely detailed larger slice of it. They could provide either high resolution or a large area to study, not both.
To overcome this dichotomy, Dr. Li turned to an AI technique called a generative adversarial network (GAN). This algorithm pits two competing algorithms again each other, and then iterates on those algorithms with slight changes to them and judges whether those incremental changes improved the algorithm or not. Eventually, with enough iterations, both algorithms become much more accurate naturally on their own.
Only one in three fertilizations leads to a successful pregnancy. Many embryos fail to progress beyond early development. Cell biologists at the Max Planck Institute (MPI) for Biophysical Chemistry in Göttingen (Germany), together with researchers at the Institute of Farm Animal Genetics in Mariensee and other international colleagues, have now developed a new model system for studying early embryonic development. With the help of this system, they discovered that errors often occur when the genetic material from each parent combines immediately after fertilization. This is due to a remarkably inefficient process.
Human somatic cells typically have 46 chromosomes, which together carry the genetic information. These chromosomes are first brought together at fertilization, 23 from the father’s sperm, and 23 from the mother’s egg. After fertilization, the parental chromosomes initially exist in two separate compartments, known as pronuclei. These pronuclei slowly move towards each other until they come into contact. The pronuclear envelopes then dissolve, and the parental chromosomes unite.
The majority of human embryos, however, end up with an incorrect number of chromosomes. These embryos are often not viable, making erroneous genome unification a leading cause of miscarriage and infertility.
Researchers at ETH Zurich have succeeded in turning specially prepared graphene flakes either into insulators or into superconductors by applying an electric voltage. This technique even works locally, meaning that in the same graphene flake regions with completely different physical properties can be realized side by side.
The production of modern electronic components requires materials with very diverse properties. There are isolators, for instance, which do not conduct electric current, and superconductors which transport it without any losses. To obtain a particular functionality of a component one usually has to join several such materials together. Often that is not easy, in particular when dealing with nanostructures that are in widespread use today.
A team of researchers at ETH Zurich led by Klaus Ensslin and Thomas Ihn at the Laboratory for Solid State Physics have now succeeded in making a material behave alternately as an insulator or as a superconductor – or even as both at different locations in the same material – by simply applying an electric voltage. Their results have been published in the scientific journal Nature Nanotechnology. The work was supported by the National Centre of Competence in Research QSIT (Quantum Science and Technology).