While it may not immediately sound like a dramatic feat, it could open up completely new possibilities in the field of neurological research.
“This is a problem that everyone dreams of solving,” Dr. Sinefeld said, referring to the difficulty in successfully examining thick brain tissue, especially through adult fish scales.
Dr. David Sinefeld (Credit: Jerusalem College of Technology)
Like its key allies, the UK is increasingly reliant on space-based assets for daily life in ordinary civil society and for the perfornance of its military forces. So, the Royal Air Force’s operating domain now extends from the ground to far beyond the atmosphere.
In a lockdown summer of downbeat aviation news, it is perhaps fitting that a highlight was a model aeroplane in a windtunnel. In turbulent times for aerospace, that aircraft is even named after a storm. But in showing some detail of the external shape of the Tempest future fighter, BAE Systems has also emphasised the UK’s determination to ride out the technological, financial and geopolitical hurricanes which are set to shape the national defence challenges of the next few decades.
Those late August images from BAE’s Warton, Lancashire test facility reveal an external profile designed for stealth at Mach 2, to carry a wide range of payloads and to cope with the internal heat from enough onboard electric power to anticipate exotic technologies like laser directed-energy weapons.
Transformer model, a deep learning framework, has achieved state-of-the-art results across diverse domains, including natural language, conversation, images, and even music. The core block of any Transformer architecture is the attention module, which computes similarity scores for all pairs of positions in an input sequence. Since it requires quadratic computation time and quadratic memory size of the storing matrix, with the increase in the input sequence’s length, its efficiency decreases.
Thus, for long-range attention, one of the most common methods is sparse attention. It reduces the complexity by computing selective similarity scores from the sequence, based on various methods. There are still certain limitations like unavailability of efficient sparse-matrix multiplication operations on all accelerators, lack of theoretical guarantees, insufficiency to address the full range of problems, etc.
TESS, the Transiting Exoplanet Survey Satellite, was launched in 2018 with the goal of discovering small planets around the Sun’s nearest neighbors, stars bright enough to allow for follow-up characterizations of their planets’ masses and atmospheres. TESS has so far discovered seventeen small planets around eleven nearby stars that are M dwarfs — stars that are smaller than the Sun (less than about 60% of the Sun’s mass) and cooler (surface temperatures less than about 3900 kelvin). In a series of three papers that appeared together this month, astronomers report that one of these planets, TOI-700d, is Earth-sized and also located in its star’s habitable zone; they also discuss its possible climate.
CfA astronomers Joseph Rodriguez, Laura Kreidberg, Karen Collins, Samuel Quinn, Dave Latham, Ryan Cloutier, Jennifer Winters, Jason Eastman, and David Charbonneau were on the teams that studied TOI-700d, one of three small planets orbiting one M dwarf star (its mass is 0.415 solar masses) located one hundred and two light-years from Earth. The TESS data analysis found the tentative sizes of the planets as being approximately Earth-sized, 1.04, 2.65 and 1.14 Earth-radii, respectively, and their orbital periods as 9.98, 16.05, and 37.42 days, respectively.
#NASA has selected Intuitive Machines to deliver the #polar Resources #IceMining Experiment (PRIME-1) #drill, combined with a mass spectrometer, to the #Moon by December 2022.
The ice drilling #mission is the Houston-based company’s second Moon contract award under NASA’s Commercial Lunar Payload Services (CLPS) initiative.