Toggle light / dark theme

More TAME! The first part of this has a lot of result data.


Foresight Biotech & Health Extension Meeting sponsored by 100 Plus Capital.
2021 program & apply to join: https://foresight.org/biotech-health-extension-program/

Nir Barzilai, Albert Einstein School of Medicine.

“It’s an extraordinary paper with some extraordinary claims,” says Gray Camp, a developmental biologist at the University of Basel in Switzerland, whose lab last year reported2 growing brain organoids that contained a gene common to Neanderthals and humans. The latest work takes the research further by looking at gene variants that humans lost in evolution. But Camp remains sceptical about the implications of the results, and says the work opens more questions that will require investigation.

Humans are more closely related to Neanderthals and Denisovans than to any living primate, and some 40% of the Neanderthal genome can still be found spread throughout living humans. But researchers have limited means to study these ancient species’ brains — soft tissue is not well preserved, and most studies rely on inspecting the size and shape of fossilized skulls. Knowing how the species’ genes differ from humans’ is important because it helps researchers to understand what makes humans unique — especially in our brains.

The researchers, led by Alysson Muotri, a neuroscientist at the University of California, San Diego, used the genome-editing technique CRISPR–Cas9 to introduce the Neanderthal and Denisovan form of a gene called NOVA1 into human pluripotent stem cells, which can develop into any cell type. They cultured these to form organoids, clumps of brain-like tissue, up to 5 millimetres across, alongside normal human brain organoids for comparison.

On August 26, 2020, NASA’s Fermi Gamma-ray Space Telescope detected a pulse of high-energy radiation that had been racing toward Earth for nearly half the present age of the universe. Lasting only about a second, it turned out to be one for the record books – the shortest gamma-ray burst (GRB) caused by the death of a massive star ever seen.

GRBs are the most powerful events in the universe, detectable across billions of light-years. Astronomers classify them as long or short based on whether the event lasts for more or less than two seconds. They observe long bursts in association with the demise of massive stars, while short bursts have been linked to a different scenario.

Astronomers combined data from NASA’s Fermi Gamma-ray Space Telescope, other space missions, and ground-based observatories to reveal the origin of GRB 200826A, a brief but powerful burst of radiation. It’s the shortest burst known to be powered by a collapsing star – and almost didn’t happen at all. Credit: NASA’s Goddard Space Flight Center.

Russia has unveiled the Sukhoi Checkmate, a new fifth-generation fighter jet intended to supplement the Su-57 and conquer the international market.

A mockup of the aircraft was presented in a grand ceremony on the opening day of the MAKS airshow in Moscow on July 20, 2021.

“We have been working on the project for just slightly longer than one year. Such a fast development cycle was possible only with the help of advanced computer technologies and virtual testing,” Yuri Slyusar, CEO of United Aircraft Corporation (UAC), said at the event.

Now businesses, start-ups and their backers are eyeing an even bigger bonanza in the form of the next generation of seniors. The market opportunities will shift to the development of products and services through a greater adoption of emerging technology to provide preventive health care, and help people to live in their homes for longer, plus increase independence and well being.


Opportunities in China’s elderly health care will shift to the development of tech-based products and services to help people live longer in their homes and increase their independence and well being.

We’ve seen helmets and AI that can spot brain tumors, but a new hard hat can actually treat them, too.

As part of the latest neurological breakthrough, researchers used a helmet that generates a magnetic field to shrink a deadly tumor by a third. The 53-year-old patient who underwent the treatment ultimately died due to an unrelated injury, but an autopsy of his brain showed that the procedure had removed 31% of the tumor mass in a short time. The test marked the first noninvasive therapy for a deadly form of brain cancer known as glioblastoma.

The helmet features three rotating magnets connected to a microprocessor-based electronic controller operated by a rechargeable battery. As part of the therapy, the patient wore the device for five weeks at a clinic and then at home with the help of his wife. The resulting magnetic field therapy created by the helmet was administered for two hours initially and then ramped up to a maximum of six hours per day. During the period, the patient’s tumor mass and volume shrunk by nearly a third, with shrinkage appearing to correlate with the treatment dose.