Toggle light / dark theme

For 2 decades, physicists have strived to miniaturize particle accelerators—the huge machines that serve as atom smashers and x-ray sources. That effort just took a big step, as physicists in China used a small “plasma wakefield accelerator” to power a type of laser called a free-electron laser (FEL). The 12-meter-long FEL isn’t nearly as good as its kilometers-long predecessors. Still, other researchers say the experiment marks a major advance in miniaccelerators.


Experiment demonstrates improvement in particle beams from plasma-based accelerators.

Cigarette butts are a common type of litter for marine environments but AI-powered robot litter pickers could be the solution.


It seems many people leave behind more than just sandcastles when they go home after a trip to the beach. Beach litter is a recurring issue, and it is damaging our coastal environments and wildlife.

And there is one small item that is causing a big problem: cigarette butts. They may only be a few centimetres long, but they are full of microplastics and toxic chemicals that harm the marine environment. They don’t easily decompose, and when they come into contact with the water, harmful substances can leach out.

Unfortunately, they are also the most common type of litter, with an estimated 4.5 trillion discarded annually.

CORVALLIS, Ore. – Cassie the robot, invented at Oregon State University and produced by OSU spinout company Agility Robotics, has made history by traversing 5 kilometers, completing the route in just over 53 minutes.

Cassie was developed under the direction of robotics professor Jonathan Hurst with a 16-month, $1 million grant from the Advanced Research Projects Agency of the U.S. Department of Defense.

Since Cassie’s introduction in 2017, OSU students funded by the National Science Foundation have been exploring machine learning options for the robot.

Thrilled to see Paradromics’ $20M fund raise lead by the talented Dr. Amy Kruse! Paradromics is building a brain computer interface supported by DARPA’s Biologi… See More.


The investment demonstrates confidence in Paradromics as a well-positioned player in the $200 billion BCI therapy market. Last year, Paradromics successfully completed testing of its platform, demonstrating the largest ever electrical recording of cortical activity that exceeded more than 30000 electrode channels in sheep cortex. This recording allowed researchers to observe the brain activity of sheep in response to sound stimuli with high fidelity.

“We are combining the best of neural science and medical device engineering to create a robust and reliable platform for new clinical therapies,” said Paradromics CEO Matt Angle. “This funding round is a validation of both our technology and strategic vision in leading this important developing market.”

The current funding round follows $10M in early stage private funding as well as $15M of public funding from the National Institutes of Health (NIH) and the Department of Defense (DARPA).

A team of scientists will embark on a new international research project led by Harvard University to search for evidence of extraterrestrial life by looking for advanced technology it may leave behind.

The Galileo Project is led by the Harvard astronomy professor Avi Loeb co-founded the project with Frank Laukien, CEO of Bruker Corporation, a Massachusetts-based manufacturer of scientific equipment.

But while science fiction provides military planners with a tantalizing glimpse of future weaponry, from exoskeletons to mind-machine interfaces, the genre is always about more than flashy new gadgets. It’s about anticipating the unforeseen ways in which these technologies could affect humans and society – and this extra context is often overlooked by the officials deciding which technologies to invest in for future conflicts.

Imagined worlds

Like my colleague David Seed, who has studied how fiction impacts on real-life threat assumptions about nuclear terrorism, I’m interested in how science fiction informs our sense of the future. This has given me the opportunity to work with members of the armed forces, using science fiction to query assumptions and generate novel visions of the future.