Menu

Blog

Page 6283

Sep 9, 2020

Re-activating Youth Boosting Genes to Reverse Human Aging By 2030

Posted by in categories: biotech/medical, life extension

As you get older, key genes that maintain life are no longer activated. George Church is focused on turning youth-boosting genes back on.

His company, Rejuvenate Bio, has begun clinical trials in old dogs. This will help us determine which ages of humans would best benefit. George believes they will be able to help people who are already quite old and show signs of decline. They are looking at extending absolute lifespan. Extending human lifespan will take years to get reliable results.

They have published results on three genes. Those genes already helped reverse osteoarthritis, high-fat obesity and diabetes, heart damage, and kidney disease. They will soon add cancer and neurodegenerative diseases to the list of reversible conditions.

Sep 9, 2020

Physicists Just Found Time Crystals in a Common Item You Can Buy at The Toy Store

Posted by in category: particle physics

O,.o circa 2018.


Characteristics of mysterious time crystals have been found in the most unexpected place you’d ever think to look — a compound found in fertiliser and those crystal-growing kits you can buy for kids.

That compound is monoammonium phosphate (MAP), and the physicists from Yale who made the discovery are now scratching their heads, because this raises questions about how time crystals even form in the first place.

Continue reading “Physicists Just Found Time Crystals in a Common Item You Can Buy at The Toy Store” »

Sep 9, 2020

The Oh My God particle

Posted by in category: particle physics

A brief history of time.

Sep 9, 2020

Cutting-Edge AI Writes Essay Convincing Us It’s Harmless

Posted by in category: robotics/AI

GPT-3, an advanced language generator developed by OpenAI, wrote a frighteningly humanlike essay for The Guardian on how humanity shouldn’t fear AI.

Sep 9, 2020

The Next Big Thing: New Galaxy Discovered at Outer Rim of the Known Universe

Posted by in category: cosmology

Astronomers at the Keck Observatory in Hawaii say they have found the most distant galaxy yet. Its name is z8_GND_5296, and it is churning out new stars at an astounding rate. The remarkable z8_GND_5296 is believed to be about 30 billion light years away, and continues to gain distance. Scientists are hoping it can provide clues to what happened right after the Big Bang.

The Keck research team determined how far away z8_GND_5296 is by measuring precisely the redness of its light. Since the galaxy is moving away, its light waves are stretched, which makes it appear redder than it truly is. Astronomers call this phenomena redshift. This galaxy holds the redshift record at 7.51, beating the now second furthest galaxy by exactly 0.3. According to Nature, an international weekly science journal, only five known galaxies have a mathematically tested and confirmed redshift “in excess of 7.”

With regard to producing new stars, z8_GND_5296 is unusually productive. Nature says it puts out “about 330 new solar masses per year, which is which is more than a factor of 100 greater than that seen in the Milky Way.” This is even more impressive if one considers z8_GND_5296’s diminutive size. The powerhouse star-producer is only about 1–2% the size of our galaxy. Of the recorded galaxies with redshifts exceeding 7, only one other has a high star-formation rate.

Sep 9, 2020

Gravitational crystal inside the black hole

Posted by in categories: cosmology, quantum physics

Circa 2015. What if a hull of ship could have warp crystals that could slip through space time easier.


Crystals, as quantum objects typically much larger than their lattice spacing, are a counterexample to a frequent prejudice that quantum effects should not be pronounced at macroscopic distances. We propose that the Einstein theory of gravity only describes a fluid phase and that a phase transition of crystallization can occur under extreme conditions such as those inside the black hole. Such a crystal phase with lattice spacing of the order of the Planck length offers a natural mechanism for pronounced quantum-gravity effects at distances much larger than the Planck length. A resolution of the black-hole information paradox is proposed, according to which all information is stored in a crystal-phase remnant with size and mass much above the Planck scale.

Sep 9, 2020

How Two Became One: Origins of a Mysterious Symbiosis Found

Posted by in category: futurism

Carpenter ants need endosymbiotic bacteria to guide the early development of their embryos. New work has reconstructed how this deep partnership evolved.

Sep 9, 2020

Development of photovoltaics that can be applied like paint for real-life application

Posted by in categories: solar power, sustainability, transportation

Researchers in Korea have successfully developed a large-area, organic-solution-processable solar cell with high efficiency. They achieved their breakthrough by controlling the speed at which the solution of raw materials for solar cells became solidified after being coated. The team, led by Dr. Hae Jung Son from the Photo-electronic Hybrids Research Center of the Korea Institute of Science and Technology (KIST), have identified the difference in the mechanism of film formation between a small area and a large area of organic solar cells in a solution process, thereby making possible the development of high-efficiency, large-area organic photovoltaics.

If a material is made in the form of paint that can be applied to any surface, such as the exterior of a building or a car, it will be possible to achieve energy self-sufficiency and provide low-cost, eco-friendly energy to regions suffering from energy poverty. Such technology would provide easy installation of photovoltaics, even on urban buildings, and the photovoltaic panels could be maintained by re-applying the “paint.”

Solution-processable , which work by coating the surface with the solar cell , are not yet feasible for industry. Currently, such large-area photovoltaics present reduced performance and production difficulties due to material- and process-related limitations, and this has been an obstacle to commercialization.

Sep 9, 2020

A device that can produce electroluminescence from infrared to ultraviolet wavelengths

Posted by in categories: materials, nanotechnology

Electroluminescence (EL), electrically produced luminescence, is crucial to the operation of many electronic devices that are designed to emit light. EL can theoretically be achieved in devices with a variety of structures and made of different materials. However, to be electroluminescent, these devices need to have a number of core features that allow them to support specific light-emitting materials.

These core features have so far limited the range of materials that can be used to build electroluminescent devices. This ultimately prevented the development of devices that can emit light at a wide range of wavelengths.

Researchers at University of California Berkeley (UC Berkeley) have recently realized an electroluminescent device that can emit light from infrared to ultraviolet wavelengths. This new device, presented in a paper published in Nature Electronics, was built using carbon nanotubes (CNTs), large, cylindrical carbon-based structures that are often used to fabricate electronics.

Sep 9, 2020

Transistor-integrated cooling for a more powerful chip

Posted by in categories: computing, engineering

Managing the heat generated in electronics is a huge problem, especially with the constant push to reduce the size and pack as many transistors as possible in the same chip. The whole problem is how to manage such high heat fluxes efficiently. Usually, electronic technologies, designed by electrical engineers, and cooling systems, designed by mechanical engineers, are done independently and separately. But now, EPFL researchers have quietly revolutionized the process by combining these two design steps into one: They’ve developed an integrated microfluidic cooling technology together with the electronics that can efficiently manage the large heat fluxes generated by transistors. Their research, which has been published in Nature, will lead to even more compact electronic devices and enable the integration of power converters, with several high-voltage devices, into a single chip.

The best of both worlds

In this ERC-funded project, Professor Elison Matioli, his doctoral student Remco Van Erp, and their team from the School of Engineering’s Power and Wide-band-gap Electronics Research Laboratory (POWERLAB), began working to bring about a real change in designing by conceiving the electronics and together, right from the beginning. The group sought to extract the very near the regions that heat up the most in the . “We wanted to combine skills in electrical and mechanical engineering in order to create a new kind of device,” says Van Erp.