Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

The future of AI

Artificial intelligence is booming. Technology companies are pouring trillions of dollars into research and infrastructure, and millions of people now interact with AI in one form or another. But what is it all for?

To find out, Nature spoke to six people at the forefront of AI development — people who are driving the technology’s development and adoption, and those who are preparing society to adapt to its rapid rise.

In this video series, they describe their greatest ambitions for the technology, their expectations of where and how it will be adopted in the coming years, and their concerns for the future.

China’s 1-second film speeds rapid charge for EVs, high-power lasers

Chinese scientists claim to have reported a major jump in capacitor manufacturing earlier this month. The group has cut the production time for dielectric energy storage parts to one second.

The announcement has drawn widespread attention because it points to fast, stable energy storage for advanced defense systems and electric vehicles.

The team used a flash annealing method that heats and cools material at a rate of about 1,832°F (1,000°C) per second. This speed allows crystal films to form on a silicon wafer in a single step. Other techniques require far more time and can take from 3 minutes to 1 hour, depending on the film quality.

US: Longshot plans gun to launch satellites into orbit

Longshot, an aerospace technology start-up founded in 2021, is developing a launch system to shoot payloads, such as satellites, into Earth’s low orbit.

This ground-based kinetic launch system, or “space gun,” aims to reduce the high cost of launching payloads into Earth orbit.

Earlier, the US-based company announced it had leased a former U.S. Navy indoor cannon testing facility at Alameda Point from the City of Alameda.

Boosting telomerase activity slows lung cell aging in pulmonary fibrosis study

Pulmonary fibrosis—also known in technical terms as idiopathic pulmonary fibrosis (IPF)—is a rare but life-threatening disease. It causes scarring of the connective tissue between the functional tissue of the lungs, leading to increasing shortness of breath. Current treatments can slow the progression of fibrosis, but cannot cure it. The average life expectancy after diagnosis is only four to six years. New therapies are therefore urgently needed.

A research team led by Professor Christian Bär, research group leader at the Institute for Molecular and Translational Therapy Strategies at Hannover Medical School (MHH), and his colleague Dr. Shambhabi Chatterjee has turned its attention to the interior of cells, or more precisely to telomeres. These are protective caps at the ends of chromosomes, the carriers of our genetic information.

With each cell division, the telomeres shorten a little until they reach a critical length and the genes they protect could be damaged. Then the cell stops dividing and the tissue ages.

Perovskite photovoltaics prepare for their time in the sun

To capture more of the Sun’s spectrum, Steve Albrecht of the Technical University of Berlin and the Helmholtz Centre for Materials and Energy added a third layer of perovskite to make a so-called triple-junction cell, which could potentially offer even higher efficiencies. “It is truly a product of the future,” he says.

Other researchers are teaming perovskites with organic solar cells, forming flexible tandems suitable for indoor applications, or to cover vehicles. Yi Hou of the National University of Singapore points out that the perovskite layer filters ultraviolet light that would damage the organic cell. His team made a flexible perovskite–organic tandem5 with a record efficiency of 26.7%, and he is commercializing the technology through his company Singfilm Solar.

Despite the promising efficiency results, there was broad consensus at the conference that long-term stability is the field’s most pressing issue. Collaboration between researchers from academia, industry and national labs will be vital to fix that, says Marina Leite at the University of California, Davis: “We can work together to finally resolve the problem of stability in perovskites and truly enable this technology in the near future.”

/* */