Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

Establishing a new QM/MM design principle based on electronic-state responses

A research team has proposed a new design principle for QM/MM (quantum mechanics/molecular mechanics) simulations. The approach enables objective and automatic determination of the quantum-mechanical region based on electronic-state changes, addressing a long-standing challenge in multiscale molecular simulations.

The researchers included Professor Hirotoshi Mori (Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University), together with Nichika Ozawa (first-year Ph.D. student at Ochanomizu University) and Assistant Professor Nahoko Kuroki of Ochanomizu University.

The findings are published in the journal Advanced Science as a cover article.

Superconducting nanowire memory array achieves significantly lower error rate

Quantum computers, systems that process information leveraging quantum mechanical effects, will require faster and energy-efficient memory components, which will allow them to perform well on complex tasks. Superconducting memories are promising memory devices that are made from superconductors, materials that conduct electricity with a resistance of zero when cooled below a critical temperature.

These memory devices could be faster and consume significantly less energy than existing memories based on superconductors. Despite their potential, most existing superconducting memories are prone to errors and are difficult to scale up to create larger systems containing several memory cells.

Researchers at Massachusetts Institute of Technology (MIT) recently developed a new scalable superconducting memory that is based on nanowires, one-dimensional (1D) nanostructures with unique optoelectronic properties. This memory, introduced in a paper published in Nature Electronics, was found to be less prone to errors than many other superconducting nanowire-based memories introduced in the past.

Brain Scans Reveal Hidden Changes After Menopause

New research suggests menopause is associated with brain volume loss in key regions tied to memory and emotions, along with higher rates of anxiety, depression, and sleep issues.

Hormone therapy didn’t prevent these changes, though it may slow age-related declines in reaction speed.

Menopause linked to brain changes and mental health challenges.

Reentry and disintegration dynamics of space debris tracked using seismic data

Therefore, there is a pressing need to develop tools that can be used to determine the trajectory, size, nature, and potential impact locations of reentering debris in near real time. This is a critical step toward mobilizing appropriate response operations (7). In this work, we have demonstrated that open-source seismic data are capable of fulfilling this requirement.

Past work has demonstrated the sensitivity of seismometers to reentry-generated shockwaves and explosions of natural meteoroids [for example, (8–10)]. However, the trajectories, speeds, and fragmentation chains of artificial spacecraft falling from orbit are distinct from those of natural objects entering from beyond the Earth‒Moon system. This means that the patterns of debris fallout that artificial spacecraft produce are also potentially more complex; for example, some components such as fuel tanks are structurally reinforced and hence more likely to survive and impact the ground, whereas others (such as solar panels) are deliberately designed to demise during reentry. Therefore, techniques used for natural objects require modification.

Hubble Images of 3I/ATLAS During Its Rare Alignment with the Sun-Earth Axis on January 22, 2026

Good news. The rare cosmic alignment between the interstellar visitor 3I/ATLAS, the Earth and the Sun, was captured by the Hubble Space Telescope on January 22, 2026.

A new set of six 170 second exposures, taken by the Hubble Space Telescope between 13:10:30 and 13:43:33 UTC on January 22, 2026, were just posted here. The exposures display brightness maps of the glowing halo surrounding 3I/ATLAS. The glow is elongated by about 100,000 kilometers in the direction of the Sun, a length scale which is about ten times larger than the Earth’s diameter.

In a new paper that I published with Mauro Barbieri here, we alerted astronomers to this “full Moon phase” of 3I/ATLAS when observers from Earth will see it from the direction of the Sun to within an extremely small misalignment angle of just 0.012 radians. This rare alignment resulted in a brightness surge whose magnitude and growth rate are dictated by the composition and structure of the particles shed by jets of 3I/ATLAS. No new data other than the Hubble images was made public as of yet.

/* */