Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

High pressure increases terahertz emission 13-fold in 2D semiconductor GaTe, study reveals

A new study led by the Aerospace Information Research Institute of the Chinese Academy of Sciences, along with their collaborators, has demonstrated that high pressure can significantly enhance and precisely tune terahertz (THz) radiation from the two-dimensional semiconductor gallium telluride (GaTe).

Using a diamond anvil cell, the research team achieved a 13-fold increase in THz emission and directly mapped the sequence of ultrafast processes that produce THz waves.

Their findings are published in Laser & Photonics Reviews.

Calibrating qubit charge to make quantum computers even more reliable

Quantum computers will be able to assume highly complex tasks in the future. With superconducting quantum processors, however, it has thus far been difficult to read out experimental results because measurements can cause interfering quantum state transitions.

Researchers at Karlsruhe Institute of Technology (KIT) and Université de Sherbrooke in Québec have performed experiments that improve our understanding of these processes and have shown that calibrating the charge at the qubits contributes to fault avoidance.

Their findings have been published in Physical Review Letters.

Dislocations without crystals: Burgers vectors discovered in glass

For nearly a century, scientists have understood how crystalline materials—such as metals and semiconductors—bend without breaking. Their secret lies in tiny, line-like defects called dislocations, which move through an orderly atomic lattice and carry deformation with them.

At the heart of this theory is a geometric quantity known as the Burgers vector, experimentally observed for the first time in the 1950s, which precisely measures how much the lattice is distorted by a dislocation. This concept became one of the cornerstones of modern materials science.

Glasses, however, have always stood apart. From window glass and polymers to metallic glasses and many soft materials, glasses lack the regular atomic structure of crystals. Their particles are arranged randomly, frozen into disordered atomic configurations.

Noise-proof quantum sensor uses three calcium ions held in place by electric fields

Researchers at the University of Innsbruck have shown that quantum sensors can remain highly accurate even in extremely noisy conditions. It’s the first experimental realization of a powerful quantum sensing protocol, outperforming all comparable classical strategies—even under overwhelming noise.

The study has been published in Physical Review Letters.

Quantum sensors promise unprecedented measurement precision, but their advantage can quickly erode in realistic environments where noise dominates.

The case for an antimatter Manhattan project

Chemical rockets have taken us to the moon and back, but traveling to the stars demands something more powerful. Space X’s Starship can lift extraordinary masses to orbit and send payloads throughout the solar system using its chemical rockets, but it cannot fly to nearby stars at 30% of light speed and land. For missions beyond our local region of space, we need something fundamentally more energetic than chemical combustion, and physics offers, or, in other words, antimatter.

When antimatter encounters ordinary matter, they annihilate completely, converting mass directly into energy according to Einstein’s equation E=mc². That c² term is approximately 10¹⁷, an almost incomprehensibly large number. This makes antimatter roughly 1,000 times more energetic than nuclear fission, the most powerful energy source currently in practical use.

As a source of energy, antimatter can potentially enable spacecraft to reach nearby stars at significant fractions of the speed of light. A detailed technical analysis by Casey Handmer, CEO of Terraform Industries, outlines how humanity could develop practical antimatter propulsion within existing spaceflight budgets, requiring breakthroughs in three critical areas; production efficiency, reliable storage systems, and engine designs that can safely harness the most energetic fuel physically possible.

HIE-ISOLDE: Ten years, ten highlights

The Isotope Separator On-Line facility (ISOLDE) directs a proton beam from the Proton Synchrotron Booster (PSB) onto specially developed thick targets, producing low-energy beams of radioactive nuclei—those with too many or too few neutrons to be stable. These beams can be further accelerated to energies of up to 10 MeV per nucleon using the HIE-ISOLDE linear accelerator, enabling a wide range of studies.

The HIE-ISOLDE beams are sent to three experimental stations: the Miniball array of high-purity germanium gamma-ray detectors, the ISOLDE solenoid spectrometer (ISS), which repurposed a former MRI magnet, and the scattering experimental chamber (SEC), used for a broad variety of physics experiments. Since its first experiment in October 2015, HIE-ISOLDE has been pushing back the boundaries of nuclear physics. To celebrate its 10th anniversary, we look back at 10 key achievements that have defined its first decade.

New digital state of matter could help build stable quantum computers

Scientists have taken another major step toward creating stable quantum computers. Using a specialized quantum computer chip (an essential component of a quantum computer) as a kind of tiny laboratory, a team led by Pan Jianwei at the University of Science and Technology of China has created and studied a rare and complex type of matter called higher-order nonequilibrium topological phases.

This digital matter (not conventional physical material) is unique because its key behaviors are super-stable and located only at its corners. But this stability is only maintained when the material is constantly bombarded with energy pulses.

The work is a big deal because it shows that quantum computers can be used as reliable simulators to discover and test new stable forms of matter. This will be necessary if scientists are to create quantum computers that never break down (or are at least highly reliable), because super-stable corner behaviors are the kind of error-proof properties needed to build trustworthy quantum hardware.

Natural language found more complex than it strictly needs to be—and for good reason

Human languages are complex phenomena. Around 7,000 languages are spoken worldwide, some with only a handful of remaining speakers, while others, such as Chinese, English, Spanish and Hindi, are spoken by billions. Despite their profound differences, they all share a common function: they convey information by combining individual words into phrases—groups of related words—which are then assembled into sentences. Each of these units has its own meaning, which in combination ultimately form a comprehensible whole.

“This is actually a very complex structure. Since the natural world tends toward maximizing efficiency and conserving resources, it’s perfectly reasonable to ask why the brain encodes linguistic information in such an apparently complicated way instead of digitally, like a computer,” explains Michael Hahn.

Hahn, Professor of Computational Linguistics at Saarland University, has been examining this question together with his colleague Richard Futrell from the University of California, Irvine. The paper is published in the journal Nature Human Behaviour.

Dynamic duo of bacteria could change Mars dust into versatile building material for first human colonists

Since humanity’s first steps on the moon, the aspiration to extend human civilization beyond Earth has been a central objective of international space agencies, targeting long-term extraterrestrial habitation. Among the celestial bodies within reach, Mars is considered our next home.

The red planet, with its stark landscapes and tantalizing similarities to Earth, beckons as the frontier of human exploration and settlement. But establishing a permanent foothold on Mars remains one of humanity’s boldest dreams and the most formidable scientific and engineering challenge.

The red planet, once draped in a thick atmosphere, has undergone dramatic transformation over billions of years. Its protective blanket vanished, leaving behind an environment nearly unrecognizable to terrestrial life.

Physicists create ‘quantum wire’ where mass and energy flow without friction or loss

In physical systems, transport takes many forms, such as electric current through a wire, heat through metal, or even water through a pipe. Each of these flows can be described by how easily the underlying quantity—charge, energy, or mass—moves through a material.

Normally, collisions and friction lead to resistance causing these flows to slow down or fade away. But in a new experiment at TU Wien, scientists have observed a system where that doesn’t happen at all.

By confining thousands of rubidium atoms to move along a single line using magnetic and optical fields, they created an ultracold quantum gas in which energy and mass move with perfect efficiency. The results, now published in the journal Science, show that even after countless collisions, the flow remains stable and undiminished, thus revealing a kind of transport that defies the rules of ordinary matter.

/* */