Paintings, drawings, antique prints, manuscripts, divination and alchemical items, tantra.
Researchers have built a paper-thin chip that converts infrared light into visible light and directs it precisely, all without mechanical motion. The design overcomes a long-standing efficiency-versus-control problem in light-shaping materials. This opens the door to tiny, highly efficient light sources integrated directly onto chips.
The holodeck is here with Project Genie.
How neuronal function is shaped by mitochondria.
Despite the established links between mitochondrial dysfunction and neuronal disorders, the specialization of mitochondria to support the specific demands of neurons has been less extensively explored.
Proper mitochondrial positioning influences an array of neuronal functions and processes, from neurodevelopment through synaptic transmission, due to the participation of mitochondria as local ATP suppliers, Ca2+ sinks, and sites of neurotransmitter synthesis.
In neurons, mitochondria are also crucial for local translation in axons and dendrites, to which they provide both local ATP and mRNA transport. In this way, mitochondria emerge as centers for neuronal plasticity sciencenewshighlights ScienceMission https://sciencemission.com/Mitochondrial-specialization
Neurons are specialized cells designed to process information and transmit it, often across long distances. In many neurons, the axonal volume far exceeds the somato-dendritic volume, creating a need for long-range transport and local polarization mechanisms. In addition, action potential firing and restoration of ionic gradients, as well as dynamic changes in synaptic plasticity, further increase the energetic demands of neurons. In this review, we highlight the roles mitochondria play in vertebrate neuronal biology and how mitochondrial functionality is tuned to support the unique demands of neurons. We cover the influence of mitochondrial positioning, ATP generation and Ca2+ buffering on neuronal function, and explore the role of mitochondria in neurotransmitter metabolism and local protein translation.
Vancomycin is the antibiotic doctors reach for when almost nothing else will work. It’s used in hospitals for serious drug-resistant infections, or for when an infection is spreading through the patient’s bloodstream, but it’s also notoriously tricky to dose: too little and it won’t knock out the infection, too much and the patient risks kidney damage or even death. Up to 40% of patients receiving vancomycin develop an acute kidney injury.
Right now, dosage levels are monitored by repeated blood tests, an invasive and time-consuming process that can’t always give clinicians the data they need in time. Hoping to solve this issue, UNSW and international researchers working alongside Australian diagnostics company Nutromics developed a minimally invasive patch that tracks the antibiotic in patients every five minutes.
The team has published the results of a clinical trial in Nature Biotechnology, and say its success demonstrates that the major scientific and safety challenges have been solved.
Entropy is one of the most profound and misunderstood concepts in modern science — at once a physical quantity, a measure of uncertainty, and a metaphor for the passage of time itself. Entropy: The Order of Disorder explores this concept in its full philosophical and scientific depth, tracing its evolution from the thermodynamics of Clausius and Boltzmann to the cosmology of the expanding universe, the information theory of Shannon, and the paradoxes of quantum mechanics.
At the heart of this study lies a critical insight: entropy in its ideal form can exist only in a perfectly closed and isolated system — a condition that is impossible to realize, even for the universe itself. From this impossibility arises the central tension of modern thought: the laws that describe equilibrium govern a world that never rests.
Bridging physics, philosophy, and cosmology, this book examines entropy as a universal principle of transformation rather than decay. It situates the second law of thermodynamics within a broader intellectual landscape, connecting it to the philosophies of Heraclitus, Kant, Hegel, and Whitehead, and to contemporary discussions of information, complexity, and emergence.