Menu

Blog

Page 5555

Oct 30, 2021

Watch these autonomous drones zip through the woods

Posted by in categories: drones, robotics/AI

Drones trained using “privileged expert” achieve amazing abilities.

Oct 30, 2021

How much information is in the universe? It’s an unfathomable number

Posted by in category: particle physics

This was described in his 2019 paper, “The mass-energy-information equivalence principle,” which extends Einstein’s theories about the interrelationship of matter and energy to data itself. Consistent with IT, Vopson’s study was based on the principle that information is physical and that all physical systems can register information. He concluded that the mass of an individual bit of information at room temperature (300K) is 3.19 × 10-38 kg (8.598 × 10-38 lbs).

Taking Shannon’s method further, Vopson determined that every elementary particle in the observable Universe has the equivalent of 1.509 bits of encoded information. “It is the first time this approach has been taken in measuring the information content of the universe, and it provides a clear numerical prediction,” he said. “Even if not entirely accurate, the numerical prediction offers a potential avenue toward experimental testing.”

Oct 30, 2021

Hubble versus James Webb: How the 2 powerful telescopes compare

Posted by in category: life extension

While the Hubble Space Telescope ages, the James Webb Telescope prepares to launch.


With the aging Hubble space telescope experiencing another malfunction, how does the venerable telescope compare with its soon to the forthcoming James Webb?

Oct 30, 2021

Neutralizing antibody vaccine for pandemic and pre-emergent coronaviruses

Posted by in categories: biotech/medical, nanotechnology

Universal covid vaccine works well in chimps human trails next. #COVID19 #cure


Immunization of macaques with nanoparticle-conjugated receptor-binding domain of SARS-CoV-2 adjuvanted with 3M-052 and alum results in cross-neutralizing antibodies against bat coronaviruses, SARS-CoV and SARS-CoV-2 variants, and may provide a platform for developing pan-coronavirus vaccines.

Oct 30, 2021

High speed ultrafast laser anisotropic nanostructuring

Posted by in categories: computing, nanotechnology

It is challenging to store the exponentially increasing amount of data in the information age. The multiplexed optical data storage with merits of high data density (hundreds of terabytes/disk), low energy consumption, and long lifetime could open a new era in data storage technology. The recent progress in five-dimensional (5D) optical data storage based on anisotropic nanostructures written by femtosecond (fs) laser pulses in transparent materials reveals its potential for real-world applications, but high writing speed and density remain a major challenge. Here, we propose a method for rapid and energy-efficient writing of highly localized anisotropic nanostructures in silica glass by energy modulated megahertz-rate fs pulses. An isotropic nanovoid is initially generated with pulse energy above the microexplosion threshold and then elongated to an anisotropic nanolamella-like structure via the near-field enhancement effect by lower energy pulses, minimizing the unwanted thermal effects from megahertz-rate fs pulses. The anisotropic nanostructures are exploited for 5D data storage with a rate of 106voxels/s, corresponding to a demonstrated fast information recording of ∼225kB/s and a potentially high-density data storage of ∼500TB/disk.

Oct 30, 2021

New Algorithms Give Digital Images More Realistic Color

Posted by in categories: augmented reality, biotech/medical, computing, information science, virtual reality

In Optica, The Optical Society’s (OSA) journal for high impact research, Qiu and colleagues describe a new approach for digitizing color. It can be applied to cameras and displays — including ones used for computers, televisions and mobile devices — and used to fine-tune the color of LED lighting.

“Our new approach can improve today’s commercially available displays or enhance the sense of reality for new technologies such as near-eye-displays for virtual reality and augmented reality glasses,” said Jiyong Wang, a member of the PAINT research team. “It can also be used to produce LED lighting for hospitals, tunnels, submarines and airplanes that precisely mimics natural sunlight. This can help regulate circadian rhythm in people who are lacking sun exposure, for example.”

Oct 30, 2021

Absolute radiation pressure detector using a diamagnetically levitating test mass

Posted by in category: energy

We have developed an absolute radiometer to measure laser power by means of radiation pressure in a closed control-loop configuration using diamagnetically levitated pyrolytic graphite as the soft spring and gravity as a contactless restoring force. Our approach takes advantage of an extremely low spring stiffness (2.95 mN/m) afforded by diamagnetic levitation above a permanent magnet array and a lock-in amplifier in the feedback loop to attain a 30mWrms noise. A horizontally directed laser beam impinges on a highly reflective dielectric stack mirror mounted on the levitating pyrolytic graphite shuttle. The light’s momentum displaces the shuttle, and its position is restored by tilting the magnet array with a piezoelectric actuator. The closed-loop configuration avoids the need for accurate knowledge of the system spring stiffness or environmental dependencies of the diamagnetic levitation. Absolute laser power measured is traceable to the mass of the diamagnetically levitating shuttle system, the local gravitational acceleration, and the interferometrically measured tilt angle of the magnet array. The system is demonstrated with a laser power of 2.7 W, yielding a combined relative expanded uncertainty (k=2) of 1.9%. The upper limit of measurable power is determined by the range of the piezoelectric actuator, and the minimum power is currently limited by the noise floor that is constrained by air currents.

Oct 30, 2021

From sci-fi to reality: How the US Space Force launched a digital revolution

Posted by in categories: military, space

It appears the Pentagon is prepared to see how deep the rabbit hole goes.

Oct 30, 2021

Scientists Find Strange Black “Superionic Ice” That Could Exist Deep Inside Other Planets

Posted by in category: space

Using the Advanced Photon Source, scientists have recreated the structure of ice formed at the center of planets like Neptune.

Neptune is the farthest planet from the sun. In our solar system, it is the fourth-largest planet by size, and third densest. It is named after the Roman god of the sea.

Oct 30, 2021

New Way To Generate Light Through Pre-Existing Defects in Semiconductor Materials

Posted by in categories: augmented reality, computing, quantum physics, virtual reality

The discovery demonstrates a practical method to overcome current challenges in the manufacture of indium gallium nitride (InGaN) LEDs with considerably higher indium concentration, through the formation of quantum dots that emit long-wavelength light. The researchers have uncovered a new way t.


A type of group-III element nitride-based light-emitting diode (LED), indium gallium nitride (InGaN) LEDs were first fabricated over two decades ago in the 90s, and have since evolved to become ever smaller while growing increasingly powerful, efficient, and durable. Today, InGaN LEDs can be found across a myriad of industrial and consumer use cases, including signals & optical communication and data storage – and are critical in high-demand consumer applications such as solid state lighting, television sets, laptops, mobile devices, augmented (AR) and virtual reality (VR) solutions.

Ever-growing demand for such electronic devices has driven over two decades of research into achieving higher optical output, reliability, longevity and versatility from semiconductors – leading to the need for LEDs that can emit different colors of light. Traditionally, InGaN material has been used in modern LEDs to generate purple and blue light, with aluminum gallium indium phosphide (AlGaInP) – a different type of semiconductor – used to generate red, orange, and yellow light. This is due to InGaN’s poor performance in the red and amber spectrum caused by a reduction in efficiency as a result of higher levels of indium required.

Continue reading “New Way To Generate Light Through Pre-Existing Defects in Semiconductor Materials” »