Toggle light / dark theme

Physicists at the University of Sussex have discovered that black holes exert a pressure on their environment, in a scientific first.

In 1974 Stephen Hawking made the seminal discovery that emit thermal radiation. Previous to that, black holes were believed to be inert, the final stages of a dying heavy star.

The University of Sussex scientists have shown that they are in fact even more complex thermodynamic systems, with not only a temperature but also a .

The prospects for directly testing a theory of quantum gravity are poor, to put it mildly. To probe the ultra-tiny Planck scale, where quantum gravitational effects appear, you would need a particle accelerator as big as the Milky Way galaxy. Likewise, black holes hold singularities that are governed by quantum gravity, but no black holes are particularly close by — and even if they were, we could never hope to see what’s inside. Quantum gravity was also at work in the first moments of the Big Bang, but direct signals from that era are long gone, leaving us to decipher subtle clues that first appeared hundreds of thousands of years later.

But in a small lab just outside Palo Alto, the Stanford University professor Monika Schleier-Smith and her team are trying a different way to test quantum gravity, without black holes or galaxy-size particle accelerators. Physicists have been suggesting for over a decade that gravity — and even space-time itself — may emerge from a strange quantum connection called entanglement. Schleier-Smith and her collaborators are reverse-engineering the process. By engineering highly entangled quantum systems in a tabletop experiment, Schleier-Smith hopes to produce something that looks and acts like the warped space-time predicted by Albert Einstein’s theory of general relativity.

I have read about how you refuel an electric car is different. You don’t want to power an electric car on a power grid that uses fossil fuel. The goal is to have fully green refueling. I have theorized many things from my posts, such as using solar or wind with hydrogen storage. Also the components used to make batteries have an impact on the environment, unless I am wrong, as I can be wrong. I guess what I read must be wrong and Facebooks independent fact checkers are right. They always are right, and we must follow them. So please do.

Tiny biological computers made of DNA could revolutionize the way we diagnose and treat a slew of diseases, once the technology is fully fleshed out. However, a major stumbling block for these DNA-based devices, which can operate in both cells and liquid solutions, has been how short-lived they are. Just one use and the computers are spent.

Now, researchers at the National Institute of Standards and Technology (NIST) may have developed long-lived biological computers that could potentially persist inside . In a paper published in the journal Science Advances, the authors forgo the traditional DNA-based approach, opting instead to use the nucleic acid RNA to build computers. The results demonstrate that the RNA circuits are as dependable and versatile as their DNA-based counterparts. What’s more, living cells may be able to create these RNA circuits continuously, something that is not readily possible with DNA circuits, further positioning RNA as a promising candidate for powerful, long-lasting biological computers.

Much like the computer or smart device you are likely reading this on, biological computers can be programmed to carry out different kinds of tasks.

A new study led by the Massachusetts Institute of Technology has found that a group of neurons in the brain’s striatum encodes information about the potential outcomes of different decisions. The study was published in the journal, ‘Nature Communications’.

A group of neurons in the brain become particularly active when a behaviour leads to a different outcome than what was expected, which the researchers believed helped the brain adapt to changing circumstances. “A lot of this brain activity deals with surprising outcomes because if an outcome is expected, there’s really nothing to be learned. What we see is that there’s a strong encoding of both unexpected rewards and unexpected negative outcomes,” said Bernard Bloem, a former MIT postdoc and one of the lead authors of the new study.

Impairments in this kind of decision-making are a hallmark of many neuropsychiatric disorders, especially anxiety and depression. The new findings suggested that slight disturbances in the activity of these striatal neurons could swing the brain into making impulsive decisions or becoming paralyzed with indecision, the researchers said. The striatum, located deep within the brain, is known to play a key role in making decisions that require evaluating the outcomes of a particular action. In this study, the researchers wanted to learn more about the neural basis of how the brain makes cost-benefit decisions, in which a behaviour can have a mixture of positive and negative outcomes.

SINGAPORE (Reuters) — Dyson, the inventor of the bagless vacuum cleaner, said on Friday it would invest S$1.5 billion ($1.1 billion) in Singapore over the next four years, the newest phase of a S$4.9 billion global investment plan.

When Dyson announced the global investment plan in 2020, it said the money would be divided between the company’s global head office in Singapore, its two campuses in Wiltshire, southern England, and the Philippines.

On Friday, it launched its new global headquarters in a restored power station in the Southeast Asian city-state, where it plans to hire more than 250 additional engineers and scientists.

We — educators, scientists, psychologists — started an educational non-profit Earthlings Hub, to help out the kids, affected by the war. We talk to them about STEM, but also about the complexity of the world, philosophy of science, future, and existential risks. We also offer psychological help to their parents. Our advisory board includes NASA astronaut Greg Chamitoff, lead AI researcher Joscha Bach, Professor of Learning and Cognition, author of Netlogo language Uri Wilensky, lead early math educator Maria Droujkova and others. Please share, participate, donate! https://www.earthlingshub.org/

Elon Musk discussed a humanoid robot Tesla is making called Optimus, saying, “We could download the things that we believe make ourselves so unique.”


The longest drone corridor in the world could be built in the U.K., linking multiple cities across the country and representing the most ambitious British transport project since the railway network in the 18th century.

The first galaxies in the universe are a mystery to us — but that could soon change.


The cosmos has come a long way (pun intended). But the most fantastic story of all time isn’t fully understood — especially the early chapters, ‘written’ in history during the first two to three hundred million years of the universe’s 13.8 billion-year existence.

The James Webb Space Telescope could be the key. The observatory can look about three times as far back in time than the iconic Hubble. The Webb will detect infrared wavelengths long enough to pierce through the dense smog of all the light and dust that sits between Earth and the furthest galactic posts, revealing information about the ancient universe where these wavelengths began their journey through space billions of years ago.

Although not quite yet ready to collect data, the Webb Telescope promises a level of perception made possible by its four instruments. These instruments can operate at the same time to siphon observations of objects like galaxies — maximizing the efficiency of the telescope.