Toggle light / dark theme

An analysis of the genetic material in the ocean has identified thousands of previously unknown RNA viruses and doubled the number of phyla, or biological groups, of viruses thought to exist, according to a new study our team of researchers has published in the journal Science.

RNA viruses are best known for the diseases they cause in people, ranging from the common cold to COVID-19. They also infect plants and animals important to people.

These viruses carry their genetic information in RNA, rather than DNA. RNA viruses evolve at much quicker rates than DNA viruses do. While scientists have cataloged hundreds of thousands of DNA viruses in their natural ecosystems, RNA viruses have been relatively unstudied.

There’s never been a house call quite like this. In a first for telepresence communication, a NASA flight surgeon was ‘holoported’ to the International Space Station (ISS), appearing and conversing as a virtual presence in real time, hundreds of miles above the surface of Earth.

If it sounds like Star Trek, you’re not too far off. (after all, Star Trek: Voyager did feature an artificial physician who was a holographic projection.)

But this isn’t science fiction. When NASA flight surgeon Josef Schmid was beamed up to the ISS in October of last year, the illusion was made possible thanks to Microsoft’s ‘holoportation’ technology, which lets users interact with 3D representations of remote participants in real time.

There is no doubt that the “metaverse” will continue to dominate conversations — in both marketing and culture — for years. But there’s no need to sit on the sidelines as the new paradigm of 3D or “spatial” communication emerges; it’s already here and consumers are engaged and creating. Get active in AR/VR/XR today to entertain your audiences and keep your brand top-of-mind for the influencers driving the next revolution in creativity.

Jason Steinberg is managing partner of Pretty Big Monster.

Welcome to the VentureBeat community!

The researchers behind an energy system that makes it possible to capture solar energy, store it for up to eighteen years, and release it when and where it is needed have now taken the system a step further. After previously demonstrating how the energy can be extracted as heat, they have now succeeded in getting the system to produce electricity, by connecting it to a thermoelectric generator. Eventually, the research – developed at Chalmers University of Technology 0, Sweden – could lead to self-charging electronic gadgets that use stored solar energy on demand.

“This is a radically new way of generating electricity from solar energy. It means that we can use solar energy to produce electricity regardless of weather, time of day, season, or geographical location. It is a closed system that can operate without causing carbon dioxide emissions,” says research leader Kasper Moth-Poulsen, Professor at the Department of Chemistry and Chemical Engineering at Chalmers.

The researchers behind the solar energy system MOST, which makes it possible to capture solar energy, store it for up to 18 years, and release it when and where it is needed, have now taken the system a step further. After previously demonstrating how the energy can be extracted as heat, they have now succeeded in getting the system to produce electricity, by connecting it to a compact thermoelectric generator. The research, which was carried out at Chalmers University of Technology in Sweden, could eventually lead to self-charging gadgets that are powered on-demand by stored solar energy. Credit: Chalmers University of Technology.