Menu

Blog

Page 5209

Mar 7, 2022

Cooler waters created super-sized Megalodon, latest study shows

Posted by in category: biological

A new study reveals that the iconic extinct Megalodon or megatooth shark grew to larger sizes in cooler environments than in warmer areas.

DePaul University paleobiology professor Kenshu Shimada and coauthors take a renewed look through time and space at the body size patterns of Otodus , the fossil shark that lived nearly worldwide roughly 15 to 3.6 million years ago. The new study appears in the international journal Historical Biology.

Otodus megalodon is commonly portrayed as a gigantic, monstrous shark in novels and films, such as the 2018 sci-fi thriller “The Meg.” In reality, this species is only known from teeth and vertebrae in the , although it is generally accepted scientifically that the species was indeed quite gigantic, growing to at least 50 feet (15 meters) and possibly as much as 65 feet (20 meters). The new study re-examined published records of geographic occurrences of Megalodon teeth along with their estimated total body lengths.

Mar 7, 2022

DIY Airless Tires Pass Various Practical Tests, Aren’t Expensive

Posted by in category: futurism

Michelin is about to introduce its airless tires for public use, but a company in the UK decided to not wait and made its own.

Mar 7, 2022

Progress and prospects in magnetic topological materials

Posted by in categories: energy, mathematics, quantum physics

A new review paper on magnetic topological materials introduces a theoretical concept that interweaves magnetism and topology. It identifies and surveys potential new magnetic topological materials and suggests possible future applications in spin and quantum electronics and as materials for efficient energy conversion.

Magnetic topological materials represent a class of compounds whose properties are strongly influenced by the of the electronic wavefunctions coupled with their spin configuration. Topology is a simple concept dealing with the surfaces of objects. The topology of a mathematical structure is identical if it is preserved under continuous deformation. A pancake has the same topology as a cube, a donut as a coffee cup, and a pretzel as a board with three holes. Adding spin offers additional structure—a new degree of freedom—for the realization of new states of matter that are not known in non-magnetic materials. Magnetic topological materials can support chiral channels of electrons and spins, and can be used for an array of applications including information storage, control of dissipationless spin and charge transport, and giant responses under such as temperature and light.

The review summarizes the theoretical and experimental progress achieved in the field of magnetic topological materials beginning with the theoretical prediction of the quantum anomalous Hall effect without Landau levels, leading to recent discoveries of magnetic Weyl semimetals and antiferromagnetic topological insulators. It also outlines recent tabulations of all magnetic symmetry group representations and topology. As a result, all known magnetic materials—including future discoveries—can be fully characterized by their topological properties. The identification of materials for a specific technological application (e.g., quantum anomalous Hall) is straightforward.

Mar 7, 2022

Scientists confirm thermonuclear fusion in a sheared-flow Z-pinch device

Posted by in categories: computing, nuclear energy, physics

In findings that could help advance another “viable pathway” to fusion energy, research led by Lawrence Livermore National Laboratory (LLNL) physicists has proven the existence of neutrons produced through thermonuclear reactions from a sheared-flow stabilized Z-pinch device.

The researchers used advanced computer modeling techniques and diagnostic measurement devices honed at LLNL to solve a decades-old problem of distinguishing neutrons produced by from ones produced by ion beam-driven instabilities for plasmas in the magneto-inertial fusion regime.

While the team’s previous research showed neutrons measured from sheared-flow stabilized Z-pinch devices were “consistent with thermonuclear production, we hadn’t completely proven it yet,” said LLNL physicist Drew Higginson, one of the co-authors of a paper recently published in Physics of Plasmas.

Mar 7, 2022

Science competitions can help to catapult your science into the real world

Posted by in categories: biotech/medical, genetics, science

The XPrize and other competitions are helping to advance science and technological innovation.


Over the years, we have had alumni go on to become successful academic scientists, company managers and entrepreneurs. The networks that the participants create with each other during the competition are useful to tap into throughout their careers. Recently, I also learnt that a winning team from 2020 decided to create a bioelectronics start-up, INIA Biosciences, that aims to use ultrasound to interact with the immune system to relieve chronic inflammatory diseases.

More companies and foundations are seeing the advantages of science competitions and are organizing innovation challenges. The organizers benefit from recruiting talented people, gaining fresh ideas and promoting an image of innovativeness. The participants are rewarded with training, network building and prize money. In addition to the Innovation Cup, we also organize events such as the €1 million Future Insight Prize, which is given out annually to honour and enable scientists solving key challenges of humanity.

Continue reading “Science competitions can help to catapult your science into the real world” »

Mar 7, 2022

Astronomers See an Enormous Shockwave — 60x Bigger Than the Entire Milky Way Galaxy

Posted by in categories: cosmology, particle physics

Astronomers have a thing for big explosions and collisions, and it always seems like they are trying to one-up themselves in finding a bigger, brighter one. There’s a new entrant to that category – an event so big it created a burst of particles over 1 billion years ago that is still visible today and is 60 times bigger than the entire Milky Way.

That shockwave was created by the merger of two galaxy clusters to create a supercluster known as Abell 3667. This was one of the most energetic events in the universe since the Big Bang 0, according to calculations by Professor Francesco de Gasperin and his time from the University of Hamburg and INAF. When it happened over 1 billion years ago, it shot out a wave of electrons, similar to how a particle accelerator would. All these years later, those particles are still traveling at Mach 2.5 (1500 km/s), and when they pass through magnetic fields, they emit radio waves.

Mar 7, 2022

Newly discovered brain cells may be a memory filing system, study suggests

Posted by in categories: biotech/medical, computing, neuroscience

A scientist opens a laptop in front of a patient. On screen, a boy, tied to a fleet of balloons, fades in. As he rises into the air, the scene cuts abruptly to an office, where a man sits in front of his boss. A question then appears: “Was anyone in the video wearing a tie?”

Jie Zheng, a postdoctoral fellow at Boston Children’s Hospital, had flown to Los Angeles to show the video to this patient, who has a severe seizure disorder. Like with the 18 other patients who were part of the study, neurosurgeons had placed electrodes in the patient’s brain to pinpoint what had been causing their seizures. Zheng and a group of scientists in a federally funded BRAIN Initiative consortium used this opportune moment to find neurons involved in the creation of memories. While subjects watched clips from movies and answered questions that tested their memory of the videos, the electrical activity of their brains was monitored.

Over three years, the work — a collaboration between researchers at Cedars-Sinai in L.A., Boston Children’s, and the University of Toronto — led to the discovery of two new groups of brain cells: boundary and event cells. The researchers theorized that these neurons are involved in cleaving experiences into distinct events that humans can better remember. The study, published in Nature Neuroscience, may pave the way for new treatments for memory disorders, the authors said.

Mar 7, 2022

Jacques Cousteau’s grandson is building a network of ocean floor research stations

Posted by in categories: engineering, food, habitats, space

Fabien Cousteau has a vision for how humans can live and work in the ocean. He imagines that long-term stays under the waves could be enabled through the construction of underwater habitats, which would look and feel like houses, as opposed to just sealed, submarine-like bubbles.

These habitats would have a galley, kitchen, workspace, and sleeping quarters, he describes. And of course, there would be windows, or viewports, to the outside world, and a front door in the form of a moon pool that will actually be on the bottom of the house. This would allow easy access into and out of the facility.

Continue reading “Jacques Cousteau’s grandson is building a network of ocean floor research stations” »

Mar 7, 2022

‘A Bigger Earthquake Than SWIFT’—What The Russia PayPal, Visa And Mastercard Ban Means For Bitcoin And Crypto Amid Extreme Price Swings

Posted by in categories: bitcoin, blockchains, cryptocurrencies, finance

Bitcoin and cryptocurrencies have been pushed into the spotlight over the last week as global financial sanctions on Russia come into force.

Subscribe now to Forbes’ CryptoAsset & Blockchain Advisor and successfully navigate the latest crypto price crash

The bitcoin price had bounced higher on expectations sanctioned Russians could turn to bitcoin and crypto but fell back as following comments from Fed chair Jerome Powell.

Mar 7, 2022

A piece of space junk just hit the Moon — and it could unlock lunar secrets

Posted by in category: space travel

It’s likely not from SpaceX as originally reported, but the mysterious piece of junk has captivated spaceflight fans as they watch its journey across the skies.