Dec 8, 2021
Gravitational waves could be key to answering why more matter was left over after Big Bang
Posted by Saúl Morales Rodriguéz in categories: cosmology, particle physics
A team of theoretical researchers have found it might be possible to detect Q-balls in gravitational waves, and their detection would answer why more matter than anti-matter to be left over after the Big Bang, reports a new study in Physical Review Letters.
The reason humans exist is because at some time in the first second of the Universe’s existence, somehow more matter was produced than anti-matter. The asymmetry is so small that only one extra particle of matter was produced every time ten billion particles of anti matter were produced. The problem is that even though this asymmetry is small, current theories of physics cannot explain it. In fact, standard theories say matter and anti matter should have been produced in exactly equal quantities, but the existence of humans, Earth, and everything else in the universe proves there must be more, undiscovered physics.
Currently, a popular idea shared by researchers is that this asymmetry was produced just after inflation, a period in the early universe when there was a very rapid expansion. A blob of field could have stretched out over the horizon to evolve and fragment in just the right way to produce this asymmetry.