Toggle light / dark theme

Imagine this: A smooth touchscreen display placed on top of a thin silicone polymer film suddenly generates the feeling of a tiny raised button under the user’s finger. Or how about the idea of wearing that same polymer film like a second skin? If used to line an industrial glove, the film can provide valuable feedback by gesture recognition and by sending tactile signals, such as pulses or vibrations, to the wearer. The research team led by Professor Stefan Seelecke of Saarland University will be at this year’s Hannover Messe, the industrial trade fair running from 30 May to 2 June, where the team will be demonstrating how smart tactile surfaces are now being used as novel human-machine interfaces.

Seelecke’s research team at Saarland University are using thin silicone films to give surfaces some very novel capabilities. The technology, which is able to create the sensation of a tactile “button” or “slider” on flat glass display screens, is literally bringing a new dimension to touchscreen interactions. The is able to change shape on demand to create the feeling of a raised button or a key on the surface of the display that the user can then use, for example, to navigate around a page or to enter data.

“Using this technology, we can make the user interfaces of smart phones, information screens or household devices more user friendly,” said Seelecke, who heads the Intelligent Material Systems Lab at Saarland University. If a user feels a pulse or vibration under their fingertips, they can then respond by tapping the screen. And because the user also experiences the slight resistance that we feel when we press a ‘real’ button or switch, they know that their response has been successful. For the blind and partially sighted, this sort of physical feedback is not a gimmick, but hugely valuable in their day to day lives.

Many criticisms have been leveled against Elon Musk—that he’s part of the elite, that Tesla has been the beneficiary of government handouts and exemptions, that his transhumanist Neuralink is a brain-data-mining operation. Yet his planned purchase of Twitter, his supposed free-speech absolutism, and his subsequent renunciation of the Democratic Party as “the party of hate” have put Musk squarely in the crosshairs of the woke cartel.

Vitriolic Twitter storms, a New York Times-Financial Times biographical exposé, a slew of hit pieces and scaremongering segments in the legacy media, and allegations of sexual harassment have dogged the automobile magnate ever since his Twitter bid. In response, Musk announced on Twitter that he’s assembling a legal crew to sue defamers and defend Tesla (and likely himself) against lawsuits.

But the best indication that the woke cartel has really gone berserk is its removal of Tesla from the S&P 500’s ESG (Environmental, Social, and Governance) Index. This last rebuff proves that “ESG is a scam.”

Chemical reactions that are driven by light offer a powerful tool for chemists who are designing new ways to manufacture pharmaceuticals and other useful compounds. Harnessing this light energy requires photoredox catalysts, which can absorb light and transfer the energy to a chemical reaction.

MIT chemists have now designed a new type of photoredox that could make it easier to incorporate light-driven reactions into . Unlike most existing photoredox catalysts, the new class of materials is insoluble, so it can be used over and over again. Such catalysts could be used to coat tubing and perform chemical transformations on reactants as they flow through the tube.

“Being able to recycle the catalyst is one of the biggest challenges to overcome in terms of being able to use photoredox catalysis in manufacturing. We hope that by being able to do flow chemistry with an immobilized catalyst, we can provide a new way to do photoredox catalysis on larger scales,” says Richard Liu, an MIT postdoc and the joint lead author of the new study.

We find that a uniform scaling of the gravitational free-fall rates and photon-electron scattering rate leaves most dimensionless cosmological observables nearly invariant. This result opens up a new approach to reconciling cosmic microwave background and large-scale structure observations with high values of the Hubble constant $H_0$: Find a cosmological model in which the scaling transformation can be realized without violating any measurements of quantities not protected by the symmetry. A “mirror world” dark sector allows for effective scaling of the gravitational free-fall rates while respecting the measured mean photon density today. Further model building might bring consistency with the two constraints not yet satisfied: the inferred primordial abundances of deuterium and helium.

Lack of a robotic hand that can match a human hand will continue to delay full automation.


SINGAPORE, May 30 (Reuters) — After struggling to find staff during the pandemic, businesses in Singapore have increasingly turned to deploying robots to help carry out a range of tasks, from surveying construction sites to scanning library bookshelves.

The city-state relies on foreign workers, but their number fell by 235,700 between December 2019 and September 2021, according to the manpower ministry, which notes how COVID-19 curbs have sped up “the pace of technology adoption and automation” by companies.

At a Singapore construction site, a four-legged robot called “Spot”, built by U.S. company Boston Dynamics, scans sections of mud and gravel to check on work progress, with data fed back to construction company Gammon’s control room.

While volcanic eruptions and earthquakes serve as immediate reminders that Earth’s interior is anything but peaceful, there are also other, more elusive, dynamic processes taking place deep down below our feet. Using information from ESA’s Swarm satellite mission, scientists have discovered a completely new type of magnetic wave that sweeps across the outermost part of Earth’s outer core every seven years. This fascinating finding, presented today at ESA’s Living Planet Symposium, opens a new window into a world we can never see.

Earth’s magnetic field is like a huge bubble protecting us from the onslaught of cosmic radiation and charged particles carried by powerful winds that escape the Sun’s gravitational pull and stream across the Solar System. Without our magnetic field, life as we know it could not exist.

😳!


[Alexander] created codex_py2cpp as a way of experimenting with Codex, an AI intended to translate natural language into code. [Alexander] had slightly different ideas, however, and created codex_py2cpp as a way to play with the idea of automagically converting Python into C++. It’s not really intended to create robust code conversions, but as far as experiments go, it’s pretty neat.

Biodiversity is on the verge of being devastated due to the inclination towards deforestation these days. The adverse climatic conditions that our Earth is facing nowadays are also the result of this pressing concern. However, to mitigate this climatic distress caused by deforestation, a team of researchers at the MIT Institute has come up with a novel technique to artificially grow wood in a controlled environment in the lab, which can then be used for making furniture and other wooden houses, which are now being made from cutting trees, thereby posing a threat to our natural habitat. Apart from the amazing growth, we can also print “3D custom-designed wooden structures” out of the replicas, which can considerably reduce wood waste as well.

Prior to discussing the mechanism of wood production, an interesting thing to note is that we can easily change the shape and structure of these artificially produced woods according to our requirements. The researchers have demonstrated the whole process through an experiment in which a flowering plant known as “Common zinnia (Zinnia Elegans)” would be taken and the cells are then extracted from its leaves which can then be conserved in a liquid mixture for several days. After it becomes nutritionally embellished, a gel-based material would be utilized to further refine the mixture.

However, these cells would then give birth to new plant cells which will then be treated accordingly as per the lab conditions. Moreover, we can also reform the physical and mechanical properties of the cells by increasing or decreasing the hormonal concentrations as per the needs.