Toggle light / dark theme

What would happen if you put a couple of physicists in a room with a rope, a box and a black hole? They might come up with a plan to power the Earth for centuries. Black holes aren’t something you come across every day. To make a black hole of your own, you’d have to squeeze a star ten times bigger than our Sun into a sphere the diameter of New York City.

Transcript and sources: https://whatif.show/what-if-we-could-harness-the-energy-of-a-black-hole/
Music: http://bit.ly/whatif-music.

Watch more what-if scenarios:
Planet Earth: https://www.youtube.com/watch?v=_-HhCwYD7rc&list=PLZdXRHYAVx…Yq9N9wyb2l.
The Cosmos: https://www.youtube.com/watch?v=gfuJyVkMH_g&list=PLZdXRHYAVx…wXNGYHmE8U
Technology: https://www.youtube.com/watch?v=CS3bBO05fpU&list=PLZdXRHYAVx…qSEB7kDdKO
Your Body: https://www.youtube.com/watch?v=QmXR46TrbA8&list=PLZdXRHYAVx…2ySsHj8GZO
Humanity: https://www.youtube.com/watch?v=fdCDQIyXGnw&list=PLZdXRHYAVx…t8zFxSCSvZ

Tweet us your what-if question to suggest an episode: https://twitter.com/WhatIfScience.

Join the audience for a live webinar at 3 p.m. BST on 5 July 2022 exploring the most recent real-time adaptive radiotherapy developments and the new cardiac radioablation treatment.

Stereotactic radioablation is a novel, non-invasive treatment option for cardiac arrhythmias. The heart is dose sensitive and its motion contributes significantly to dose delivery uncertainties.

A lab in Tennesee that does research in neutron, nuclear and clean energy had to debunk the myth that they were somehow attempting to open portals to other dimensions. Though if I ever learned anything from popular science fiction, if a research lab says they aren’t opening portals to parallel universes, my instinct tells me that they are totally opening portals to other dimensions. So you can imagine why folks would be skeptical.

Research scientist Leah Broussard explains in the video above that the experiments they are doing at the Oak Ridge National Laboratory (which is managed by the US Department of Energy) aren’t exactly about building portals to other dimensions. Instead, they involved “looking for new ways that matter we know and understand, that makes up our universe, might interact with the dark matter that makes up the majority of our universe, which we don’t understand.”

Broussard also explains when a particle physicist says portal, they mean it in a figurative sense. All this talk of parallel universes came when her research was released and people started making connections to the Netflix show, Stranger Things. A show that, coincidentally, features kids stumbling across a shady government agency opening portals to other dimensions full of monsters, in the ’80s.

Hyundai is offering an early look at its upcoming all-electric sedan, the Ioniq 6. It comes as Bloomberg reports that the company’s EV market share is quietly surging in Europe and the US, causing even Tesla’s Elon Musk to take notice.


Hyundai has revealed an early look at its upcoming all-electric sedan, the Ioniq 6. It draws inspiration from the kind of streamlined car designs that were popular in the 20s and 30s with vehicles like the Stout Scarab.

Join Professor Michelle Simmons to find out how scientists are delivering Richard Feynman’s dream of designing materials at the atomic limit for quantum machines. 🔔Subscribe to our channel for exciting science videos and live events, many hosted by Brian Cox, our Professor for Public Engagement: https://bit.ly/3fQIFXB

#Physics #Quantum #RichardFeynman.

Sixty years ago, the great American physicist Richard Feynman delivered a famous lecture in which he urged experimentalists to push for the creation of new materials with features designed at the atomic limit. He called this the “final question”: whether ultimately “we can arrange the atoms the way we want: the very atoms all the way down!”

Professor Simmons will explain how to manufacture materials and devices whose properties are determined by the placement of individual atoms, and will highlight the creative explosion in new devices that has followed and the many new insights into the quantum world that this revolution has made possible.

Space is a deep, dark, vast abyss that exists between the cosmos, separating them from each other. But is it truly as empty as we think it is? Or is the vacuum that spans everywhere hiding something from us? Something mysterious, and perhaps the most powerful source of energy?

Zero-point energy, also known as vacuum energy, has been touted as a potentially limitless and ubiquitous source of energy, if one could only find the means to harness it.

Welcome to Factnomenal and today we’re looking at the facts and demystifying the most mysterious energy in the universe.

Buy us a coffee to show your support!

What is time? Why is it so different from space? And where did it come from? Scientists are still stumped by these questions — but working harder than ever to answer them.


St. Augustine said of time, “If no one asks me, I know what it is. If I wish to explain to him who asks, I don’t know.” Time is an elusive concept: We all experience it, and yet, the challenge of defining it has tested philosophers and scientists for millennia.

It wasn’t until Albert Einstein that we developed a more sophisticated mathematical understanding of time and space that allowed physicists to probe deeper into the connections between them. In their endeavors, physicists also discovered that seeking the origin of time forces us to confront the origins of the universe itself.

What exactly is time, and how did it come into being? Did the dimension of time exist from the moment of the Big Bang, or did time emerge as the universe evolved? Recent theories about the quantum nature of gravity provide some unique and fantastic answers to these millennia-old questions.

Aircrafts transport people, ship goods, and perform military operations, but the petroleum-based fuels that power them are in short supply. In research publishing on June 30 in the journal Joule, researchers at the Lawrence Berkeley Lab have found a way to generate an alternative jet fuel by harvesting an unusual carbon molecule produced by the metabolic process of bacteria commonly found in soil.

“In chemistry, everything that requires to make will release energy when it’s broken,” says lead author Pablo Cruz-Morales, a microbiologist at DTU Biosustain, part of the Technical University of Denmark. When petroleum jet is ignited, it releases a tremendous amount of energy, and the scientists at the Keasling Lab at the Lawrence Berkeley Laboratory thought there must be a way to replicate this without waiting millions of years for new fossil fuels to form.

Jay Keasling, a at University of California, Berkeley, approached Cruz-Morales, who was a postdoc in his lab at the time, to see if he could synthesize a tricky molecule that has the potential to produce a lot of energy. “Keasling told me: it’s gonna be an explosive idea,” says Cruz-Morales.