In recent years, roboticists have developed increasingly advanced robotic systems, many of which have artificial hands or robot hands with multiple fingers. To complete everyday tasks in both homes and public settings, robots should be able to use their “hands” to efficiently grasp and manipulate objects.
Enabling dexterous manipulation involving multiple fingers in robots, however, has so far proved challenging. This is primarily because it is an advanced skill that entails an adaptation to the shape, weight, and configuration of objects.
Researchers at Universität Hamburg have recently introduced a new approach to teach robots to grasp and manipulate objects using a multi-fingered robotic hand. This approach, introduced in IEEE Transactions on Neural Networks and Learning Systems, allows a robotic hand to learn from humans through teleoperation and adapt its manipulation strategies based on human hand postures and the data gathered when interacting with the environment.