Menu

Blog

Page 5023

Mar 29, 2022

New Clues to Earth’s Formation From Ancient Helium Leaking From the Planet’s Core

Posted by in category: cosmology

Vast stores of helium from the Big Bang lingering in the core suggest Earth formed inside a solar nebula.

Helium-3, a rare isotope of helium gas, is leaking out of Earth’s core, a new study reports. Because almost all helium-3 is from the Big Bang, the gas leak adds evidence that Earth formed inside a solar nebula, which has long been debated.

Helium-3 has been measured at Earth’s surface in relatively small quantities. But scientists did not know how much was leaking from the Earth’s core, as opposed to its middle layers, called the mantle.

Mar 29, 2022

Scientists build circuit that generates clean, limitless power from graphene

Posted by in categories: energy, physics

Physicists has successfully developed a circuit capable of capturing graphene’s thermal motion and converting it into an electrical current.

Mar 29, 2022

Enzyme blocker could open new treatments for neurodegenerative diseases

Posted by in categories: biotech/medical, neuroscience

𝐍𝐞𝐰 𝐀𝐭𝐥𝐚𝐬:

The Neuro-Network.

𝐄𝐧𝐳𝐲𝐦𝐞 𝐛𝐥𝐨𝐜𝐤𝐞𝐫 𝐜𝐨𝐮𝐥𝐝 𝐨𝐩𝐞𝐧 𝐧𝐞𝐰 𝐭𝐫𝐞𝐚𝐭𝐦𝐞𝐧𝐭𝐬 𝐟𝐨𝐫 𝐧𝐞𝐮𝐫𝐨𝐝𝐞𝐠𝐞𝐧𝐞𝐫𝐚𝐭𝐢𝐯𝐞 𝐝𝐢𝐬𝐞𝐚𝐬𝐞𝐬

Continue reading “Enzyme blocker could open new treatments for neurodegenerative diseases” »

Mar 29, 2022

Team at Borexino shows it is possible to have directional and energy sensitivity when studying solar neutrinos

Posted by in categories: electronics, particle physics

A group of researchers working with data from the Borexino detector at the Laboratori Nazionali del Gran Sasso in Italy, has shown that it is possible to measure solar neutrinos with both directional and energy sensitivity. Two teams within the group have written papers describing the work by the group—one of them has published their work in Physical Review D, the other in Physical Review Letters.

The Borexino detector was first proposed back in 1986 and its structure was completed in 2004. In May of 2007, it began providing researchers with data. Its purpose has been to measure neutrino fluxes in proton-proton chains. The detector, which is currently being dismantled, was made using 280 metric tons of radio-pure liquid scintillator which was shielded by a layer of water. Detections were made as scattered off electrons in the scintillator—the light that was emitted was picked up by sensors lining the tank.

For most of its existence, data from the Borexino detector was an excellent source of high-resolution sensitivity data down to low energy thresholds, but it offered little in the way of directional trajectories. In this new effort, the researchers found a way to use the data from the detector with data from another detector to provide trajectory information.

Mar 29, 2022

HB11’s hydrogen-boron laser fusion test yields groundbreaking results

Posted by in categories: nuclear energy, particle physics, space

HB11 is approaching nuclear fusion from an entirely new angle, using high power, high precision lasers instead of hundred-million-degree temperatures to start the reaction. Its first demo has produced 10 times more fusion reactions than expected, and the company says it’s now “the only commercial entity to achieve fusion so far,” making it “the global frontrunner in the race to commercialize the holy grail of clean energy.”

We’ve covered Australian company HB11’s hydrogen-boron laser fusion innovations before in detail, but it’s worth briefly summarizing what makes this company so different from the rest of the field. In order to smash atoms together hard enough to make them fuse together and form a new element, you need to overcome the incredibly strong repulsive forces that push two positively-charged nuclei apart. It’s like throwing powerful magnets at each other in space, hoping to smash two north poles together instead of having them just dance out of each other’s way.

The Sun accomplishes this by having a huge amount of hydrogen atoms packed into a plasma that’s superheated to tens of millions of degrees at its core. Heat is a measure of kinetic energy – how fast a group of atoms or molecules are moving or vibrating. At these temperatures, the hydrogen atoms are moving so fast that they smack into each other and fuse, releasing the energy that warms our planet.

Mar 29, 2022

Sublue’s Seabow is a Powerful Underwater Scooter That Fits In with Marine Life

Posted by in category: futurism

Mar 29, 2022

Qualcomm invests $100 million in the Metaverse, fostering XR tech

Posted by in categories: internet, robotics/AI

Mar 29, 2022

Scientists discover a new “speed limit” for all electronic devices

Posted by in category: electronics

Mar 29, 2022

Evidence for the maximally entangled low x proton in Deep Inelastic Scattering from H1 data

Posted by in category: futurism

Mar 29, 2022

Russia, China can’t take down Starlink’s 2,000+ satelites, says Elon Musk

Posted by in categories: Elon Musk, internet