Menu

Blog

Page 4975

Jul 11, 2022

First image from NASA’s Webb telescope is our deepest view of the universe

Posted by in category: space

The newly released full-color image highlights a stunning collection of ancient galaxies—and heralds a new age for astronomy.

Jul 11, 2022

Look: SpaceX teases orbital test flight with dramatic Starship images

Posted by in categories: Elon Musk, space travel

Long time coming.


Elon Musk previously suggested the Starship prototype SN24 would be ready to embark on an orbital test flight sometime in July.

Jul 11, 2022

A new therapy with magnets is helping people with depression when nothing else works

Posted by in categories: biotech/medical, neuroscience

Remission of depression with new magnetic therapy:3.


Although she’d tried medications and therapy, Chase felt her symptoms get worse over the course of a few months. And she knew things were really getting serious when thoughts of suicide crept in.

That’s when her mother found research about a new type of treatment for depression called Stanford neuromodulation therapy, which uses magnetic fields to stimulate the brain. (It was previously referred to as Stanford accelerated intelligent neuromodulation therapy or SAINT.)

Continue reading “A new therapy with magnets is helping people with depression when nothing else works” »

Jul 11, 2022

A new dominant omicron strain in the U.S. is driving up cases — and reinfections

Posted by in category: biotech/medical

The BA.5 variant is now the most dominant strain of COVID-19 in the country, according to the Centers for Disease Control and Prevention. And while it’s hard to get an exact count — given how many people are taking rapid tests at home — there are indications that both reinfections and hospitalizations are increasing.

For example: Some 31,000 people across the U.S. are currently hospitalized with the virus, with admissions up 4.5% compared to a week ago. And data from New York state shows that reinfections started trending upwards again in late June.

Jul 11, 2022

The Strange Mystery of Singularities And Evolving Universes

Posted by in category: futurism

An exploration of the various types of singularities hypothesized to exist in the universe and an exploration of whether these singularities could lead to other universes.

My Patreon Page:

Continue reading “The Strange Mystery of Singularities And Evolving Universes” »

Jul 11, 2022

LIVE: NASA Is About to Unveil The Deepest View of The Universe Ever

Posted by in category: space

The first image from the James Webb Space Telescope will be released in 45 minutes! 😱 Watch with us.


Last week, NASA administrator Bill Nelson told us we’d see the “deepest image of our Universe that has ever been taken” on July 12, thanks to the newly operational James Webb Space Telescope (JWST). And we know many of you excitedly marked the date in your calendar.

Continue reading “LIVE: NASA Is About to Unveil The Deepest View of The Universe Ever” »

Jul 11, 2022

“Brain” on a Chip — Toward a Precision Neuroelectronic Interface | Hongkun Park | TEDxKFAS

Posted by in categories: bioengineering, biotech/medical, chemistry, cyborgs, nanotechnology, neuroscience, quantum physics

Brain-machine interfaces (BMIs) are devices that enable direct communication/translation between biological neuronal networks (e.g. a brain or a spine) and external machines. They are currently being used as a tool for fundamental neuroscience research and also for treating neurological disorders and for manipulating neuro-prosthetic devices. As remarkable as today’s BMIs are, however, the next generation BMIs will require new hardware and software with improved resolution and specificity in order to precisely monitor and control the activities of complex neuronal networks. In this talk, I will describe my group’s effort to develop new neuroelectronic devices enabled by silicon nanotechnology that can serve as high-precision, highly multiplexed interface to neuronal networks. I will then describe the promises, as well as potential pitfalls, of next generation BMIs. Hongkun Park is a Professor of Chemistry and Chemical Biology and a Professor of Physics at Harvard University. He is also an Institute Member of the Broad Institute of Harvard and MIT and a member of the Harvard Center for Brain Science and Harvard Quantum Optics Center. He serves as an associate editor of Nano Letters. His research interests lie in exploring solid-state photonic, optoelectronic, and plasmonic devices for quantum information processing as well as developing new nano-and microelectronic interfaces for living cells, cell networks, and organisms. Awards and honors that he received include the Ho-Am Foundation Prize in Science, NIH Director’s Pioneer Award, and the US Vannevar Bush Faculty Fellowship, the David and Lucile Packard Foundation Fellowship for Science and Engineering, the Alfred P. Sloan Research Fellowship, and the Camille Dreyfus Teacher-Scholar Award. This talk was given at a TEDx event using the TED conference format but independently organized by a local community.

Jul 11, 2022

What comes after the Higgs boson

Posted by in category: particle physics

Ten years ago this week, two international collaborations of groups of scientists, including a large contingent from Caltech, confirmed that they had found conclusive evidence for the Higgs boson, an elusive elementary particle, first predicted in a series of articles published in the mid-1960s, that is thought to endow elementary particles with mass.

Fifty years prior, as endeavored to understand the so-called electroweak theory, which describes both electromagnetism and the weak nuclear force (involved in ), it became apparent to Peter Higgs, working in the UK, and independently to François Englert and Robert Brout, in Belgium, as well as U.S. physicist Gerald Guralnik and others, that a previously unidentified field that filled the universe was required to explain the behavior of the that compose matter. This field, the Higgs field, would lead to a particle with zero spin, significant mass, and have the ability to spontaneously break the symmetry of the earliest universe, allowing the universe to materialize. That particle became known as the Higgs boson.

Continue reading “What comes after the Higgs boson” »

Jul 11, 2022

Researchers build longest highly-conductive molecular nanowire

Posted by in categories: chemistry, nanotechnology

As our devices get smaller and smaller, the use of molecules as the main components in electronic circuitry is becoming ever more critical. Over the past 10 years, researchers have been trying to use single molecules as conducting wires because of their small scale, distinct electronic characteristics, and high tunability. But in most molecular wires, as the length of the wire increases, the efficiency by which electrons are transmitted across the wire decreases exponentially. This limitation has made it especially challenging to build a long molecular wire—one that is much longer than a nanometer—that actually conducts electricity well.

Columbia researchers announced today that they have built a nanowire that is 2.6 nanometers long, shows an unusual increase in conductance as the wire length increases, and has quasi-metallic properties. Its excellent conductivity holds great promise for the field of molecular electronics, enabling electronic devices to become even tinier. The study is published today in Nature Chemistry.

Jul 11, 2022

New molecular wires for single-molecule electronic devices

Posted by in categories: chemistry, engineering, particle physics

Scientists at Tokyo Institute of Technology designed a new type of molecular wire doped with organometallic ruthenium to achieve unprecedentedly higher conductance than earlier molecular wires. The origin of high conductance in these wires is fundamentally different from similar molecular devices and suggests a potential strategy for developing highly conducting “doped” molecular wires.

Since their conception, researchers have tried to shrink electronic devices to unprecedented sizes, even to the point of fabricating them from a few molecules. Molecular wires are among the building blocks of such minuscule contraptions, and many researchers have been developing strategies to synthesize highly conductive, stable wires from carefully designed molecules.

A team of researchers from Tokyo Institute of Technology, including Yuya Tanaka, designed a novel in the form of a metal electrode-molecule-metal electrode (MMM) junction including a polyyne, an organic chain-like molecule, “doped” with a ruthenium-based unit Ru(dppe)2. The proposed design, featured in the cover of the Journal of the American Chemical Society, is based on engineering the energy levels of the conducting orbitals of the atoms of the wire, considering the characteristics of gold electrodes.