Nov 21, 2022
Predicting Hemorrhagic Stroke
Posted by Saúl Morales Rodriguéz in categories: biotech/medical, neuroscience
Patient-specific modeling could help clinicians determine whether an individual’s brain aneurysm is at risk of bursting.
Patient-specific modeling could help clinicians determine whether an individual’s brain aneurysm is at risk of bursting.
Asphaltenes, a byproduct of crude oil production, are a waste material with potential. Rice University scientists are determined to find it by converting the carbon-rich resource into useful graphene.
Muhammad Rahman, an assistant research professor of materials science and nanoengineering, is employing Rice’s unique flash Joule heating process to convert asphaltenes instantly into turbostratic (loosely aligned) graphene and mix it into composites for thermal, anti-corrosion and 3D-printing applications.
The process makes good use of material otherwise burned for reuse as fuel or discarded into tailing ponds and landfills. Using at least some of the world’s reserve of more than 1 trillion barrels of asphaltene as a feedstock for graphene would be good for the environment as well.
Two-dimensional materials, which consist of just a single layer of atoms, can be packed together more densely than conventional materials, so they could be used to make transistors, solar cells, LEDs, and other devices that run faster and perform better.
One issue holding back these next-generation electronics is the heat they generate when in use. Conventional electronics typically reach about 80 degrees Celsius, but the materials in 2D devices are packed so densely in such a small area that the devices can become twice as hot. This temperature increase can damage the device.
This problem is compounded by the fact that scientists don’t have a good understanding of how 2D materials expand when temperatures rise. Because the materials are so thin and optically transparent, their thermal expansion coefficient (TEC)—the tendency for the material to expand when temperatures increase—is nearly impossible to measure using standard approaches.
Engineers at Caltech and the University of Southampton in England have collaboratively designed an electronics chip integrated with a photonics chip (which uses light to transfer data)—creating a cohesive final product capable of transmitting information at ultrahigh speed while generating minimal heat.
Though the two–chip sandwich is unlikely to find its way into your laptop, the new design could influence the future of data centers that manage very high volumes of data communication.
“Every time you are on a video call, stream a movie, or play an online video game, you’re routing data back and forth through a data center to be processed,” says Caltech graduate student Arian Hashemi Talkhooncheh, lead author of a paper describing the two-chip innovation that was published in the IEEE Journal of Solid-State Circuits on November 3.
O.o!!!
How to Spot a Neutrino
The National Robotarium at Heriot-Watt University is focused on the development and testing of robotics and AI solutions By Hollie Tye Designing and manufacturing assisted living technologies, Pressalit were asked to contribute to the work being carried out by the Ambient Assisted Living Lab (AAL) at Heriot-Watt University Demonstrating how assisted living technologies can help transform lives, solutions […].
Solar panels often get a bad rap for spoiling the appearance of homes and businesses. Yet, this may be about to change.
Summary: A new study will investigate the genetic and biological mysteries of extreme longevity and healthy aging.
Source: american federation for aging research.
Decades of research will be aided by the results of a study launched today – the most ambitious ever conducted to uncover and understand the genetic and biological mysteries of exceptional longevity and healthy aging.
This is the first time scientists have observed vessels form with such a close resemblance to the complicated structure of naturally occurring blood vessels.
An international research collaboration headed by the University of Sydney has created technology that allows for the production of materials that mirror the structure of living blood vessels, with major implications for the future of surgery.
Preclinical research showed that once the manufactured blood vessel was transplanted into mice, the body accepted it and new cells and tissue began to develop in the appropriate locations, thereby converting it into a “living blood vessel.”
A team of researchers from Friedrich-Schiller-Universität Jena, Università di Torino and INFN sezione di Torino, has found evidence that the black hole collision that led to an odd gravitational wave detection in 2019 was due to a unique set of circumstances. In their paper published in the journal Nature Astronomy, the group describes modeling and simulating the conditions that could possibly lead to the unique gravitational wave signature.
The development of gravitational wave detectors has led to a better understanding of what happens when black holes collide. In most instances, the data has shown, they occur due to binary stars exploding and then slowly spiraling toward one another until they meet at a gravitational center and merge.
But then, on May 21, 2019, gravitational waves were detected from two black holes merging, but the data showed that neither of the black holes appeared to be spinning and the duration of the signal was shorter than all the others that have been detected. The odd signal left astrophysicists scratching their heads. Now, in this new effort, the researchers believe they have come up with a plausible explanation for the observation.