Menu

Blog

Page 3759

Dec 1, 2022

Fusion power is ‘approaching’ reality thanks to a magnetic field breakthrough

Posted by in categories: energy, innovation

Fusion power may be a more realistic prospect than you think. As Motherboard reports, researchers at the Energy Department’s Lawrence Livermore National Laboratory have discovered that a new magnetic field setup more than tripled the energy output of the fusion reaction hotspot in experiments, “approaching” the level required for self-sustaining ignition in plasmas. The field was particularly effective at trapping heat within the hotspot, boosting the energy yield.

The hotspot’s creation involved blasting 200 lasers at a fusion fuel pellet made from hydrogen isotopes like deuterium and tritium. The resulting X-rays made the pellet implode and thus produce the extremely high pressures and heat needed for fusion. The team achieved their feat by wrapping a coil around a pellet made using special metals.

The notion of using magnets to heat the fuel isn’t new. University of Rochester scientists found they could use magnetism to their advantage in 2012. The Lawrence Livermore study was far more effective, however, producing 40 percent heat and more than three times the energy.

Dec 1, 2022

Physicists produce symmetry-protected Majorana edge modes on quantum computer

Posted by in categories: particle physics, quantum physics, robotics/AI

Physicists at Google Quantum AI have used their quantum computer to study a type of effective particle that is more resilient to environmental disturbances that can degrade quantum calculations. These effective particles, known as Majorana edge modes, form as a result of a collective excitation of multiple individual particles, like ocean waves form from the collective motions of water molecules. Majorana edge modes are of particular interest in quantum computing applications because they exhibit special symmetries that can protect the otherwise fragile quantum states from noise in the environment.

The condensed matter physicist Philip Anderson once wrote, “It is only slightly overstating the case to say that physics is the study of symmetry.” Indeed, studying and their relationship to underlying symmetries has been the main thrust of physics for centuries. Symmetries are simply statements about what transformations a system can undergo—such as a translation, rotation, or inversion through a mirror—and remain unchanged. They can simplify problems and elucidate underlying physical laws. And, as shown in the new research, symmetries can even prevent the seemingly inexorable quantum process of decoherence.

When running a calculation on a quantum computer, we typically want the quantum bits, or “qubits,” in the computer to be in a single, pure quantum state. But decoherence occurs when external electric fields or other environmental disturb these states by jumbling them up with other states to create undesirable states. If a state has a certain symmetry, then it could be possible to isolate it, effectively creating an island of stability that is impossible to mix with the other states that don’t also have the special symmetry. In this way, since the noise can no longer connect the symmetric state to the others, it could preserve the coherence of the state.

Dec 1, 2022

[ML News] GPT-4 Rumors | AI Mind Reading | Neuron Interaction Solved | AI Theorem Proving

Posted by in categories: media & arts, robotics/AI, supercomputing

Your weekly news from the AI & Machine Learning world.

OUTLINE:
0:00 — Introduction.
0:25 — AI reads brain signals to predict what you’re thinking.
3:00 — Closed-form solution for neuron interactions.
4:15 — GPT-4 rumors.
6:50 — Cerebras supercomputer.
7:45 — Meta releases metagenomics atlas.
9:15 — AI advances in theorem proving.
10:40 — Better diffusion models with expert denoisers.
12:00 — BLOOMZ & mT0
13:05 — ICLR reviewers going mad.
21:40 — Scaling Transformer inference.
22:10 — Infinite nature flythrough generation.
23:55 — Blazing fast denoising.
24:45 — Large-scale AI training with MultiRay.
25:30 — arXiv to include Hugging Face spaces.
26:10 — Multilingual Diffusion.
26:30 — Music source separation.
26:50 — Multilingual CLIP
27:20 — Drug response prediction.
27:50 — Helpful Things.

Continue reading “[ML News] GPT-4 Rumors | AI Mind Reading | Neuron Interaction Solved | AI Theorem Proving” »

Dec 1, 2022

MRNA vaccines offer one-two punch to combat malaria

Posted by in categories: biotech/medical, health

Malaria is found in more than 90 countries around the world, causing 241 million cases and an estimated 627,000 deaths every year. Vaccines are one intervention that could help eliminate this deadly disease, yet a highly effective vaccine remains elusive. Recent technological advances in vaccine development–such as the mRNA vaccines for SARS-CoV2–could lead to a new generation of malaria vaccines.

Now, a research team led by George Washington University has developed two mRNA candidates that are highly effective in reducing both and transmission. The team also found that the two experimental vaccines induced a powerful immune response regardless of whether they were given individually or in combination. The study was published today in npj Vaccines, an open-access that is part of the Nature Portfolio.

“Malaria elimination will not happen overnight but such vaccines could potentially banish from many parts of the world,” Nirbhay Kumar, a professor of global health at the George Washington University Milken Institute School of Public Health, said. “The mRNA vaccine technology can really be a game changer. We saw how successful this technology was in terms of fighting COVID and for this study we adapted it and used it to develop tools to combat malaria.”

Dec 1, 2022

China’s nuclear arsenal to triple by 2035? Country to expand nuclear warheads to 1500 | WION

Posted by in categories: military, nuclear weapons

The protests in China have had no impact on Beijing’s ambitions of world domination. On Tuesday, Chinese jets violated South Korea’s Air defence zone. A Pentagon report further claims China will have 1,500 nuclear warheads by 2035. Priyanka Sharma reports.

#Gravitas #China #Nuclear.

Continue reading “China’s nuclear arsenal to triple by 2035? Country to expand nuclear warheads to 1500 | WION” »

Dec 1, 2022

Dr. Jennifer Fogarty, Ph.D. — Baylor — Innovations To Safeguard Health & Performance In Deep Space

Posted by in categories: biotech/medical, engineering, government, health

Dr. Jennifer A. Fogarty, Ph.D. (https://www.bcm.edu/people-search/jennifer-fogarty-100936) is the Chief Scientific Officer for the Translational Research Institute for Space Health (TRISH — https://www.bcm.edu/academic-centers/space-medicine/translat…-institute) at Baylor College of Medicine, and the Director of the Applied Health and Performance at Sophic Synergistics LLC.

As Chief Scientist of TRISH, Dr. Fogarty leads an innovative and high-risk research and technology development portfolio to address the most challenging human health and performance risks of space exploration.

Continue reading “Dr. Jennifer Fogarty, Ph.D. — Baylor — Innovations To Safeguard Health & Performance In Deep Space” »

Dec 1, 2022

We built an algorithm that predicts the length of court sentences — could AI play a role in the justice system?

Posted by in categories: information science, law, robotics/AI

Artificial intelligence could help create transparency and consistency in the legal system – our model shows how.

Dec 1, 2022

Scientists link rare genetic phenomenon to neuron function, schizophrenia

Posted by in categories: biotech/medical, chemistry, genetics, robotics/AI

In our cells, the language of DNA is written, making each of us unique. A tandem repeat occurs in DNA when a pattern of one or more nucleotides—the basic structural unit of DNA coded in the base of chemicals cytosine ©, adenine (A), guanine (G) and thymine (T)—is repeated multiple times in tandem. An example might be: CAG CAG CAG, in which the pattern CAG is repeated three times.

Now, using state-of-the-art whole-genome sequencing and machine learning techniques, the UNC School of Medicine lab of Jin Szatkiewicz, Ph.D., associate professor of genetics, and colleagues conducted one of the first and the largest investigations of repeats in , elucidating their contribution to the development of this devastating disease.

Published in the journal Molecular Psychiatry, the research shows that individuals with schizophrenia had a significantly higher rate of rare tandem repeats in their genomes—7% more than individuals without schizophrenia. And they observed that the tandem repeats were not randomly located throughout the genome; they were primarily found in genes crucial to brain function and known to be important in schizophrenia, according to previous studies.

Dec 1, 2022

Physicists observe wormhole dynamics using a quantum computer

Posted by in categories: computing, cosmology, education, quantum physics

Scientists have, for the first time, developed a quantum experiment that allows them to study the dynamics, or behavior, of a special kind of theoretical wormhole. The experiment has not created an actual wormhole (a rupture in space and time), rather it allows researchers to probe connections between theoretical wormholes and quantum physics, a prediction of so-called quantum gravity. Quantum gravity refers to a set of theories that seek to connect gravity with quantum physics, two fundamental and well-studied descriptions of nature that appear inherently incompatible with each other.

“We found a that exhibits key properties of a gravitational wormhole yet is sufficiently small to implement on today’s quantum hardware,” says Maria Spiropulu, the principal investigator of the U.S. Department of Energy Office of Science research program Quantum Communication Channels for Fundamental Physics (QCCFP) and the Shang-Yi Ch’en Professor of Physics at Caltech. “This work constitutes a step toward a larger program of testing quantum gravity physics using a quantum computer. It does not substitute for direct probes of quantum gravity in the same way as other planned experiments that might probe quantum gravity effects in the future using quantum sensing, but it does offer a powerful testbed to exercise ideas of quantum gravity.”

The research will be published December 1 in the journal Nature. The study’s first authors are Daniel Jafferis of Harvard University and Alexander Zlokapa (BS ‘21), a former undergraduate student at Caltech who started on this project for his bachelor’s thesis with Spiropulu and has since moved on to graduate school at MIT.

Dec 1, 2022

Lab-grown adrenal glands could help treat hormone-related conditions

Posted by in categories: biotech/medical, chemistry

Functional adrenal glands have been grown in the lab by coaxing a type of stem cell to develop in a certain way by constantly tweaking the mix of chemicals they are bathed in.