Dec 22, 2022
Artificial intelligence and the rise of optical computing
Posted by Jose Ruben Rodriguez Fuentes in category: robotics/AI
Photonic data-processing is well-suited to the age of deep learning | Science & technology.
Photonic data-processing is well-suited to the age of deep learning | Science & technology.
The detector would search for ripples in the fabric of space-time left in the spacecraft’s wake.
In a year filled with sweet new observations in astronomy and tantalizing breakthroughs in condensed matter physics, the brand-new space telescope takes the cake.
😗
A research group led by Prof. Wu Kaifeng from the Dalian Institute of Chemical Physics (DICP), Chinese Academy of Sciences recently reported the successful initialization, coherent quantum-state control, and readout of spins at room temperature using solution-grown quantum dots, which represents an important advance in quantum information science.
The study was published in Nature Nanotechnology on Dec 19th.
Continue reading “Coherent manipulation of spin qubits at room temperature” »
Compounds in final-stage trials at Eli Lilly and Eisai may halt brain protein buildup linked to cognitive decline.
We see the world around us because light is being absorbed by specialized cells in our retina. But can vision happen without any absorption at all—without even a single particle of light? Surprisingly, the answer is yes.
Imagine that you have a camera cartridge that might contain a roll of photographic film. The roll is so sensitive that coming into contact with even a single photon would destroy it. With our everyday classical means there is no way there’s no way to know whether there’s film in the cartridge, but in the quantum world it can be done. Anton Zeilinger, one of the winners of the 2022 Nobel Prize in Physics, was the first to experimentally implement the idea of an interaction-free experiment using optics.
Now, in a study exploring the connection between the quantum and classical worlds, Shruti Dogra, John J. McCord, and Gheorghe Sorin Paraoanu of Aalto University have discovered a new and much more effective way to carry out interaction-free experiments. The team used transmon devices—superconducting circuits that are relatively large but still show quantum behavior—to detect the presence of microwave pulses generated by classical instruments. Their research was recently published in Nature Communications.
As our Energy Central Community thrives and grows with each passing year, it’s clear to us that we have something special here. This community of power industry professionals who so eagerly and openly share their insights, their lessons learned, and their questions to allow for constant collaboration is unparalleled anywhere else in our sector.
The most critical part of this successful undertaking, though, is of course the people behind it all. The voices in our Community who are driving those conversations and keeping readers and peers coming back again and again. To once again celebrate the importance of our community members in making Energy Central the powerhouse that it is, we’re ending the year by honoring the members on Energy Central who went above and beyond—frequently sharing news and content, reliably starting conversations across the site, and providing some of the most genuinely high-value contributions throughout 2022.
All week, we’ll be publishing articles highlighting the Top Voice of 2022 for each of our 6 Networks. As part of this tradition, some of those community members recognized were kind enough to answer a few questions to highlight what they found valuable in the sector in 2022, their predictions for 2023, and some personal insights to get to know the men and women behind it all.
𝐀𝐥𝐳𝐡𝐞𝐢𝐦𝐞𝐫’𝐬 𝐃𝐢𝐬𝐞𝐚𝐬𝐞
One of the main features of Alzheimer’s disease is that the β-amyloid peptide, a molecule found inside neurons that has many diverse functions, begins to fold incorrectly and accumulates. This process, which ends up causing neuronal death, is linked to a series of other cellular alterations, making it difficult to determine whether they are the cause or the consequence. An example is the case of the deregulation of a type of dynorphin.
Dynorphins are the body’s own opioid peptides, which play a key role in many brain pathways. They are located in different areas of the brain, such as the hippocampus, amygdala or hypothalamus, and are involved in memory processes, emotion control, stress and pain, and among other processes. In addition, several studies have shown their involvement in epilepsy, stroke, addictions, depression and schizophrenia.
Today the international LHCb collaboration at the Large Hadron Collider (LHC) presented new measurements of rare particle transformations, or decays, that provide one of the highest-precision tests yet of a key property of the Standard Model of particle physics, known as lepton flavor universality.
Previous studies of these decays had hinted at intriguing tensions with the theoretical predictions, potentially due to the effects of new particles or forces. The results of the improved and wider-reaching analysis based on the full LHC dataset collected by the experiment during Run 1 and Run 2, which were presented at a seminar at CERN held this morning, are in line with the Standard Model expectation.
A central mystery of particle physics is why the 12 elementary quarks and leptons are arranged in pairs across three generations that are identical in all but mass, with ordinary matter comprising particles from the first, lightest generation. Lepton flavor universality states that the fundamental forces are blind to the generation to which a lepton belongs.
No one has yet managed to travel through time – at least to our knowledge – but the question of whether or not such a feat would be theoretically possible continues to fascinate scientists.
As movies such as The Terminator, Donnie Darko, Back to the Future and many others show, moving around in time creates a lot of problems for the fundamental rules of the Universe: if you go back in time and stop your parents from meeting, for instance, how can you possibly exist in order to go back in time in the first place?
It’s a monumental head-scratcher known as the ‘grandfather paradox’, but a few years ago physics student Germain Tobar, from the University of Queensland in Australia, worked out how to “square the numbers” to make time travel viable without the paradoxes.