Toggle light / dark theme

Get the latest international news and world events from around the world.

Log in for authorized contributors

MIT Invents Injectable Brain Chips

Not exactly a brain chip per se by a bit of nanotech.


While companies like Elon Musk’s Neuralink are hard at work on brain-computer interfaces that require surgery to cut open the skull and insert a complex array of wires into a person’s head, a team of researchers at MIT have been researching a wireless electronic brain implant that they say could provide a non-invasive alternative that makes the technology far easier to access.

They describe the system, called Circulatronics, as more of a treatment platform than a one-off brain chip. Working with researchers from Wellesley College and Harvard University, the MIT team recently released a paper on the new technology, which they describe as an autonomous bioelectronic implant.

As New Atlas points out, the Circulatronics platform starts with an injectable swarm of sub-cellular sized wireless electronic devices, or “SWEDs,” which can travel into inflamed regions of the patient’s brain after being injected into the bloodstream. They do so by fusing with living immune cells, called monocytes, forming a sort of cellular cyborg.

China’s JUNO announces first physics result after two-month commissioning

Researchers work at a control room of the Jiangmen Underground Neutrino Observatory (JUNO) in Jiangmen, south China’s Guangdong Province, Aug. 26, 2025. The world’s largest transparent spherical detector began operation in China on Tuesday, making it the world’s first operational ultra-large scientific facility dedicated to neutrino research with ultra-high precision. Having completed the filling of its 20,000-tonne liquid scintillator detector, JUNO in Guangdong began taking data after more than a decade of preparation and construction. (Photo by Liu Yuexiang/Xinhua)

Epstein-Barr Virus Alters B Cells, Possibly Driving Lupus

Epstein-Barr virus (EBV) infected and reprogrammed autoreactive B cells in patients with systemic lupus erythematosus (SLE) to become activated antigen-presenting cells. EBV-infected B cells in patients with SLE showed increased antigen-presenting capabilities, unlike those in healthy control individuals, and may serve as drivers of systemic autoimmune responses.


Epstein-Barr virus reprograms autoreactive B cells, possibly contributing to systemic lupus erythematosus, with infected B cells in patients showing high antigen-presenting capabilities.

New roles found for STIP1 and Maspin proteins in cell renewal and structure

Two recently published studies led by Brazilian scientists reveal the key roles of multifunctional proteins, STIP1 and Maspin, in vital cellular processes.

The results demonstrate new functions that help clarify how cells maintain their shape, communicate, and renew themselves. These findings contribute to new studies on cancer, embryogenesis, and potential applications in .

According to one of the studies, STIP1 plays a central role in and maintaining pluripotency, or the ability of cells to multiply and give rise to other .

Children With Autism, ADHD, And Anorexia Share a Common Microbe Imbalance

The ratio of two dominant groups of microbes in the human gut was higher across all three disorder groups than was typically seen in the control group.


A new, small study suggests children with autism, ADHD, and anorexia share similarly disrupted gut microbiomes, which, by some measures, have more in common with each other than with their healthy, neurotypical peers.

Led by researchers from Comenius University in Slovakia, the study used stool samples to assess the gut microbiomes of 117 children.

The exploratory study included 30 boys with autism spectrum disorder (ASD), 21 girls with anorexia nervosa, and 14 children with attention deficit hyperactivity disorder (ADHD). The remaining samples were from age-and sex-matched healthy and neurotypical children, providing a control group.

The Role of Tregs in the Tumor Microenvironment

The tumor microenvironment (TME) is a unique ecosystem that surrounds tumor tissues. The TME is composed of extracellular matrix, immune cells, blood vessels, stromal cells, and fibroblasts. These environments enhance cancer development, progression, and metastasis. Recent success in immune checkpoint blockade also supports the importance of the TME and immune cells residing in the tumor niche. Although the TME can be identified in almost all cancer types, the role of the TME may not be similar among different cancer types. Regulatory T cells (Tregs) play a pivotal role in immune homeostasis and are frequently found in the TME. Owing to their suppressive function, Tregs are often considered unfavorable factors that allow the immune escape of cancer cells.

90% of Gamers Have Played a Remake or Remaster, Finds New Report

According to MTM, many respondents said that they find remakes and remasters “help them reconnect with positive, comforting feelings and memories that they had when they first played the game.”

However, the firm noted that others raised concerns about studios “taking an easy, repetitive route to market” and that these remakes come at the cost of “sacrificing innovative, new experiences that could redefine the industry.”

“Our report shows that there is a strong appeal for remakes and remasters, but it’s a tight balancing act for studios to get right,” said Martin Bradley, head of gaming at MTM.” Many of these games are far out-selling their original release.

Ancient bog growth reveals shifting Southern Hemisphere winds 15,000 years ago

Scientists have revealed that ancient bogs in the Southern Hemisphere hold clues to a major shift in Earth’s climate thousands of years ago.

Researchers looking at peatlands have discovered that sudden shifts in the Southern Westerly Winds 15,000 years ago triggered a massive growth of the swamps.

Geo-experts have never fully understood what caused the bogs to form across the Southern Hemisphere after the last Ice Age.

Scientist captures tiny particles for clues on what sparks lightning

Using lasers as tweezers to understand cloud electrification might sound like science fiction, but at the Institute of Science and Technology Austria (ISTA) it is a reality. By trapping and charging micron-sized particles with lasers, researchers can now observe their charging and discharging dynamics over time.

This method, published in Physical Review Letters, could provide key insights into what sparks lightning.

Aerosols are liquid or that float in the air. They are all around us. Some are large and visible, such as pollen in spring, while others, such as viruses that spread during flu season, cannot be detected by the naked eye. Some we can even taste, like the airborne salt crystals we breathe in at the seaside.

/* */