A research group at Osaka University has succeeded in observing at the intended timing two-phonon quantum interference by using two cold calcium ions in ion traps, which spatially confine charged particles. A phonon is a unit of vibrational energy that arises from oscillating particles within crystals. Two-particle quantum interference experiments using two photons or atoms have been previously reported, but this group’s achievement is the world’s first observation using two phonons.
This group demonstrated that the phonon, a quantum mechanical description of an elementary vibrational motion in matter, and the photon, an elementary particle of light, share common properties. This group’s research results will contribute to quantum information processing research, including quantum simulation using phonons and quantum interface research.
Ion traps are an important technique in physically achieving quantum information processing including quantum computation, and research on ion traps is being carried out all over the world, with Dr. David J. Wineland of the United States, a leading expert in the field, winning the Nobel Prize in Physics in 2012.
Read more