Toggle light / dark theme

Stockholm: The Nobel Physics prize was the second of the awards to be given away, on Tuesday, to a Birtish trio — scientists David Thouless, Duncan Haldane and Michael Kosterlitz for revealing the secrets of exotic matter.

Thouless, 82, is professor emeritus at the University of Washington in Seattle. Haldane, 65, is a professor at Princeton University, and Kosterlitz, born in 1942, teaches at Brown University in Providence, Rhode Island. The laureates will share the eight million Swedish kronor (around $931,000 or 834,000 euros) prize sum. Thouless won one-half of the prize, while Haldane and Hosterlitz share the other half.

“This year’s laureates opened the door on an unknown world where matter can assume strange states. They have used advanced mathematical methods to study unusual phases, or states, of matter, such as superconductors, superfluids or thin magnetic films. Thanks to their pioneering work, the hunt is now on for new and exotic phases of matter,” said the Nobel jury.

Read more

Single neutral atoms trapped individually in optical microtraps are incredibly useful tools for studying quantum physics, as the atoms then exist in complete isolation from the environment. Arrays of optical microtraps containing single atoms could enable quantum logic devices, quantum information processing, and quantum simulation.

While single atom trapping has already been achieved, there are still many challenges to overcome. One such challenge is making sure each trap holds no more than one atom at a time, and also keeping it there so it won’t escape. This requires uniform optical microtraps, which have yet been fully realized.

Now, Ken’ichi Nakagawa and co‐workers at the University of Electro‐Communications, Tokyo, Japan, together with scientists across Japan and China, have successfully demonstrated an optimization method for ensuring the creation of uniform holographic microtrap arrays to capture single rubidium (87Rb) atoms.

Read more

Computation is stuck in a rut. The integrated circuits that powered the past 50 years of technological revolution are reaching their physical limits.

This predicament has computer scientists scrambling for new ideas: new devices built using novel physics, new ways of organizing units within computers and even algorithms that use new or existing systems more efficiently. To help coordinate new ideas, Sandia National Laboratories has assisted organizing the Institute of Electrical and Electronics Engineers (IEEE) International Conference on Rebooting Computing held Oct. 17–19.

Researchers from Sandia’s Data-driven and Neural Computing Dept. will present three papers at the conference, highlighting the breadth of potential non-traditional neural computing applications.

Read more

The Nobel Prize in chemistry was awarded on Wednesday to scientists based in the US, France, and the Netherlands for breakthroughs in designing molecular machines that can carry out tasks— and even mimic a four-wheel-drive car — when given a jolt of energy.

Winners J. Fraser Stoddart, Jean-Pierre Sauvage, and Bernard L. Feringa discovered how to build tiny motors — 1,000 times thinner than a strand of hair.

The machinery includes rings on axles, spinning blades, and even unimaginably small creations consisting of only a few molecules that can lift themselves off a surface like tiny robots rising on tip-toe. Those molecular robots can pluck, grasp, and connect individual amino acids. The machines can also be used as a novel mechanism of drug delivery.

Read more

Nerve agents are molecular weapons that invade the body and sabotage part of the nervous system, causing horrific symptoms and sometimes death within minutes. Few antidotes exist, and those that do must be administered soon after an attack. But now scientists report in the journal ACS Nano an early-stage development of a potential treatment that soldiers or others could take before such agents are unleashed.

One particular antidote, an enzyme called organophosphorus acid anhydrolase (OPAA), has attracted attention recently for its ability to break down . But the body’s immune system gets rid of it quickly. Packaging the enzyme in liposome nanocarriers gives the antidote greater staying power, but handling and storing the liposomes is complicated. So Omar K. Farha and colleagues wanted to make a potentially simpler carrier.

For a material, the researchers turned to porous metal-organic frameworks (MOFs), a class of hybrid materials made of metallic ions and organic ligands that are easy to store and handle at room temperature. They used a zirconium-based MOF and loaded it with the antidote. Testing showed the MOF-encapsulated enzyme was even more effective at breaking down the nerve agent simulant diisopropyl fluorophosphate and the nerve agent soman than the antidote by itself.

Read more

This new species will coexist peacefully with humans, one Turing Award winner says…


Robots’ potential to take over the world is a commonly expressed fear in the world of AI, but at least one Turing Award winner doesn’t see it happening that way. Rather than replacing mankind, technology will create a new kind of human that will coexist with its predecessors while taking advantage of new tech-enabled tools.

So argued Raj Reddy, former founding director of Carnegie Mellon University’s Robotics Institute and 1994 winner of the Turing Award, at the Heidelberg Laureate Forum in Germany last week.

“I could not have predicted much of what has happened in AI,” Reddy told an audience of journalists at a press conference. “Four or five things happened in AI in the last decade that I didn’t think would happen in my lifetime,” including achievements in language translation and AI’s triumph at the game of Go.

This type of computer not really 4 personal use. Because it calculates in every possible way its task in a fraction of second. I belive that this type of computer is built to run ai. Or to run recognition software just to give example. But just imagine the possibilities.


Quantum physics, with its descriptions of bizarre properties like entanglement and superposition, can sound like a science fiction fever dream. Yet this branch of physics, no matter how counterintuitive it seems sometimes, describes the universe all around us: As physicists have told often told me, we live in a quantum world. Soon, this will be better reflected in our technology, and everything it can do.

“We’re moving towards a new paradigm for computation,” quantum information scientist Michele Mosca, who’s based at the Institute for Quantum Computing at the University of Waterloo, recently told me. He compared this shift in thinking to when humanity abandoned the flat Earth hypothesis and accepted that our world is round.

SEOUL Tech giant Samsung Electronics Co Ltd said on Thursday it is acquiring U.S. artificial intelligence (AI) platform developer Viv Labs Inc, a firm run by a co-creator of Apple Inc’s Siri voice assistant program.

Samsung said in a statement it plans to integrate the San Jose-based company’s AI platform, called Viv, into the Galaxy smartphones and expand voice-assistant services to home appliances and wearable technology devices.

Financial terms were not disclosed.

Read more