Menu

Blog

Page 10949

Jul 28, 2016

Getting light in shape with metamaterials

Posted by in categories: nanotechnology, quantum physics, supercomputing

A team built a specialized, layered structure with tiny metallic cavities that improves the light conversion efficiency by orders of magnitude.

ncident laser beam (top of the figure)  illuminating an array of nanoscale gold resonators on the surface of a quantum well semiconductor

Artist’s rendering of an incident laser beam (top of the figure) illuminating an array of nanoscale gold resonators on the surface of a “quantum well” semiconductor (slab in figure). (A quantum well is a thin layer that can restrict the movement of electrons to that layer.) The incoming laser beam interacts with the array and the quantum wells and is converted into two new laser beams with different wavelengths. Changing the size, shape, and arrangement of the resonators can be used for beam focusing, beam steering, or control of the beam’s angular momentum. (Image: Sandia National Laboratories)

Continue reading “Getting light in shape with metamaterials” »

Jul 28, 2016

Improving computer graphics with quantum mechanics

Posted by in categories: computing, engineering, quantum physics

Nice article; I do need to mention that more and more screen displays are moving to Q-Dot technology. So, computer graphics is being enriched in multiple ways by Quantum.


Caltech applied scientists have developed a new way to simulate large-scale motion numerically using the mathematics that govern the universe at the quantum level.

The , presented at the International Conference and Exhibition on Computer Graphics & Interactive Techniques (SIGGRAPH), held in Anaheim, California, from July 24–28, allows computers to more accurately simulate vorticity, the spinning motion of a flowing fluid.

Continue reading “Improving computer graphics with quantum mechanics” »

Jul 28, 2016

Chinese satellite is one giant step for the quantum internet

Posted by in categories: government, internet, quantum physics, satellites

Chinese Government launches in the coming weeks their new Quantum Satellite which advances their networks, communications, etc. The question remaining is with Chinese Government backed hackers; what will they do on this technology.


Discussion in ‘China & Far East’ started by onebyone, Jul 27, 2016 at 8:26 PM.

Read more

Jul 28, 2016

Moving beyond semiconductors for next-generation electric switches

Posted by in categories: energy, mathematics, mobile phones, quantum physics, supercomputing

Computers use switches to perform calculations. A complex film with “quantum wells”—regions that allow electron motion in only two dimensions—can be used to make efficient switches for high-speed computers. For the first time, this oxide film exhibited a phenomenon, called resonant tunneling, in which electrons move between quantum wells at a specific voltage. This behavior allowed an extremely large ratio (about 100,000:1) between two states, which can be used in an electronic device as an ON/OFF switch to perform mathematical calculations (Nature Communications, “Resonant tunneling in a quantum oxide superlattice”).

Quantum wells

Efficient control of electron motion can be used to reduce the power requirements of computers. “Quantum wells” (QW) are regions that allow electron motion in only two dimensions. The lines (bottom) in the schematic show the probability of finding electrons in the structure. The structure is a complex oxide (top) with columns (stacked blue dots corresponding to an added element) where the electrons are free to move in only two dimensions. This is a special type of quantum well called a two-dimensional electron gas (2DEG). (Image: Ho Nyung Lee, Oak Ridge National Laboratory)

Continue reading “Moving beyond semiconductors for next-generation electric switches” »

Jul 28, 2016

Could Dark Energy Be Caused By A Reaction To What’s In The Universe? (Synopsis)

Posted by in categories: cosmology, particle physics, quantum physics

“Another very good test some readers may want to look up… is the Casimir effect, where forces between metal plates in empty space are modified by the presence of virtual particles.” –Gordon Kane

If you ask what the zero-point energy of space itself is, you can sum up all of the quantum fluctuations you can that arise in quantum field theory, and arrive at an absurd answer: 120 orders of magnitude greater than the observed. Yet if you assume that there’s an incredible cancellation and you get exactly zero, that removes the one thing our Universe needs to explain its expansion: dark energy.

Read more

Jul 28, 2016

Your Next Cocktail Could Defy Gravity With the Levitating CUP

Posted by in category: futurism

The next time your have a drink at your favorite restaurant or bar; it could be in a levitating glass.


Diehard cocktail aficionados swear by serving specific drinks in the correct glass. I wonder what they’ll make of the Levitating CUP, a cocktail glass designed to float above a portable base, in seeming defiance of gravity.

It’s the brainchild of Joe Paglione, CEO of a Chicago-based startup company called Levitating Cup. They’ve launched a Kickstarter campaign to raise the necessary capital to bring the products to market. There are cocktail glasses, dessert cups, beer cups, plates, and even pillows for optimal presentation-just in case you want to throw a full dinner party without the usual coasters and place mats.

Continue reading “Your Next Cocktail Could Defy Gravity With the Levitating CUP” »

Jul 28, 2016

Versatile microrobotics using simple modular subunits

Posted by in categories: biotech/medical, particle physics, robotics/AI

The realization of reconfigurable modular microrobots could aid drug delivery and microsurgery by allowing a single system to navigate diverse environments and perform multiple tasks. So far, microrobotic systems are limited by insufficient versatility; for instance, helical shapes commonly used for magnetic swimmers cannot effectively assemble and disassemble into different size and shapes. Here by using microswimmers with simple geometries constructed of spherical particles, we show how magnetohydrodynamics can be used to assemble and disassemble modular microrobots with different physical characteristics. We develop a mechanistic physical model that we use to improve assembly strategies. Furthermore, we experimentally demonstrate the feasibility of dynamically changing the physical properties of microswimmers through assembly and disassembly in a controlled fluidic environment. Finally, we show that different configurations have different swimming properties by examining swimming speed dependence on configuration size.

Read more

Jul 27, 2016

Electricity captured in glass

Posted by in category: futurism

Imgur: The most awesome images on the Internet.

Read more

Jul 27, 2016

The Atomki anomaly

Posted by in category: particle physics

A result from an experiment in Hungary catches the attention of a group of theorists in the United States.

Read more

Jul 27, 2016

A stunning prediction of climate science — and basic physics — may now be coming true

Posted by in categories: climatology, physics, science

NASA researchers suggest sea levels may be plunging around Greenland because of ice loss and a resulting decline in gravitational pull.

Read more