Toggle light / dark theme

A team at the University of Sydney and Microsoft, in collaboration with Stanford University in the US, has miniaturised a component that is essential for the scale-up of quantum computing. The work constitutes the first practical application of a new phase of matter, first discovered in 2006, the so-called topological insulators.

Beyond the familiar phases of matter — solid, liquid, or gas — are materials that operate as insulators in the bulk of their structures but have surfaces that act as conductors. Manipulation of these materials provide a pathway to construct the circuitry needed for the interaction between and classical systems, vital for building a practical quantum .

Theoretical work underpinning the discovery of this new phase of matter was awarded the 2016 Nobel Prize in Physics.

Read more

By Lindsay Brownell

(CAMBRIDGE, Mass.) — Soft robotics has made leaps and bounds over the last decade as researchers around the world have experimented with different materials and designs to allow once rigid, jerky machines to bend and flex in ways that mimic and can interact more naturally with living organisms. However, increased flexibility and dexterity has a trade-off of reduced strength, as softer materials are generally not as strong or resilient as inflexible ones, which limits their use.

Read more

Researchers from Google and the University of California Santa Barbara have taken an important step towards the goal of building a large-scale quantum computer.

Writing in the journal Quantum Science and Technology, they present a new process for creating superconducting interconnects, which are compatible with existing superconducting .

The race to develop the first large-scale error-corrected quantum computer is extremely competitive, and the process itself is complex. Whereas classical computers encode data into binary digits (bits) that exist in one of two states, a quantum computer stores information in quantum bits (qubits) that may be entangled with each other and placed in a superposition of both states simultaneously.

Read more

Scientists have expanded the building blocks of DNA to create a stable semi-synthetic organism that can produce biological compounds entirely new to nature.

The DNA that makes up essentially all living things on Earth consists of arrangements of four basic nucleotides, but the new life-form developed by researchers in the US makes use of six – and that’s where things get interesting.

The semi-synthetic organism (SSO) engineered by a team at the Scripps Research Institute in California is made from the same four regular nucleobases as you and I – adenine (A), cytosine ©, guanine (G), and thymine (T) – but it’s also got two unnatural nucleotides to call upon.

Read more