Toggle light / dark theme

If you have ever had your blood drawn, whether to check your cholesterol, kidney function, hormone levels, blood sugar, or as part of a general checkup, you might have wondered why there is not an easier, less painful way.

Now there might be. A team of researchers from Caltech’s Cherng Department of Medical Engineering has unveiled a new wearable sensor that can detect in even minute levels of many common nutrients and biological compounds that can serve as indicators of human health.

The was developed in the lab of Wei Gao, assistant professor of , Heritage Medical Research Institute investigator, and Ronald and JoAnne Willens Scholar. For years, Gao’s research has focused on with medical applications, and this latest work represents the most precise and sensitive iteration yet.

QUT researchers are part of an international group who have explored ways in which organic transistors are being developed for use as wearable health sensors.

The currently available bioelectronic devices, such as pacemakers, that can be embedded with the are mostly based on rigid components.

However, the next-generation devices—which are researched and developed by bioelectronic engineers, , and materials scientists—will use soft organic materials that allow comfortable wearability as well as efficient monitoring of health.

Microscale light-emitting diodes (micro-LEDs) are emerging as a next-generation display technology for optical communications, augmented and virtual reality, and wearable devices. Metal-halide perovskites show great potential for efficient light emission, long-range carrier transport, and scalable manufacturing, making them potentially ideal candidates for bright LED displays.

However, manufacturing thin-film perovskites suitable for micro-LED displays faces serious challenges. For example, thin-film perovskites may exhibit inhomogeneous light emission, and their surfaces may be unstable when subjected to lithography. For these reasons, solutions are needed to make thin-film perovskites compatible with micro-LED devices.

Recently, a team of Chinese researchers led by Professor Wu Yuchen at the Technical Institute of Physics and Chemistry of the Chinese Academy of Sciences has made significant strides in overcoming these challenges. The team has developed a novel method for the remote epitaxial growth of continuous crystalline perovskite thin films. This advance allows for seamless integration into ultrahigh-resolution micro-LEDs with pixels less than 5 μm.

UCLA materials scientists have developed a compact cooling technology that can pump away heat continuously using layers of flexing thin films. The design is based on the electrocaloric effect, in which an electric field causes a temporary change in a material’s temperature.

In lab experiments, the researchers found that the prototype could lower ambient temperatures of its immediate surroundings by 16 degrees Fahrenheit continuously and up to 25 degrees at the source of the heat after about 30 seconds.

Detailed in a paper published in the journal Science, the approach could be incorporated into wearable technology or portable cooling devices.

Imagine a future where your phone, computer or even a tiny wearable device can think and learn like the human brain—processing information faster, smarter and using less energy.

A new approach developed at Flinders University and UNSW Sydney brings this vision closer to reality by electrically “twisting” a single nanoscale ferroelectric domain wall.

The domain walls are almost invisible, extremely tiny (1–10 nm) boundaries that naturally arise or can even be injected or erased inside special insulating crystals called ferroelectrics. The domain walls inside these crystals separate regions with different bound charge orientations.

Might Artificial Intelligence be the ideal lab assistant? Stefan Harrer delves into the revolutionary role of generative AI in science. He reveals how AI agents are not just tools but transformative partners for scientists enabling them to achieve breakthroughs in biology and beyond, heralding a new era of scientific discovery and innovation. This inspiring talk highlights the potential for AI to redefine the boundaries of the scientific method and our understanding of life. Dr Stefan Harrer is the Director of AI for Science at CSIRO, Australia’s national science agency. He is on a mission to revolutionise scientific discovery by harnessing the power of AI agents. In senior leadership roles at IBM Research, he led groundbreaking work on AI-driven epilepsy management and developed the world’s first AI-powered wearable for seizure prediction. An inventor with 73 granted patents, a passionate advocate for ethical AI, and a mentor and advisor to startups and governments, Stefan inspires the next frontier of AI innovation and use. This talk was given at a TEDx event using the TED conference format but independently organized by a local community.

Discover new technologies shaping 2025! NVIDIA’s Jetson Thor system is set to revolutionize humanoid robotics, while Meta’s Ray-Ban Stories smart glasses lead the wearable tech trend with over 1 million units sold. AI continues to transform industries with tools like ChatGPT. Don’t miss Unitree’s B2-W robot showcasing incredible stunts, speed, and heavy payload capabilities—available for purchase now!

📲 Follow us on social media @toborlife for updates, innovations, and exciting announcements!
💬 Have questions? Contact us at:
📧 [email protected].
📞 (408) 409‑4061

#RobotDogs #Humanoids #AIInnovation #FutureIsHere #TOBoRLife #robotdog #securitydog.

Don’t forget to like, comment, and subscribe for more amazing content from TOBoRLife! 🤖✨

Case Western Reserve University researcher advances zinc-sulfur battery technology. Rechargeable lithium-ion batteries power everything from electric vehicles to wearable devices. But new research from Case Western Reserve University suggests that a more sustainable and cost-effective alternative may lie in zinc-based batteries.

In a study published recently in Angewandte Chemie, researchers announced a significant step toward creating high-performance, low-cost zinc-sulfur batteries.

“This research marks a major step forward in the development of safer and more sustainable energy storage solutions,” said Chase Cao, a principal investigator and assistant professor of mechanical and aerospace engineering at Case School of Engineering. “Aqueous zinc-sulfur batteries offer the potential to power a wide range of applications — from renewable energy systems to portable electronics — with reduced environmental impact and reliance on scarce materials.”