Menu

Blog

Archive for the ‘wearables’ category: Page 14

Oct 4, 2023

Humane shows off its futuristic ‘AI Pin’ wearable

Posted by in categories: mobile phones, robotics/AI, wearables

In case you missed the hype, Humane is a startup founded by ex-Apple executives that’s working on a device called the “Ai Pin” that uses projectors, cameras and AI tech to act as a sort of wearable AI assistant. Now, the company has unveiled the AI Pin in full at a Paris fashion show (Humane x Coperni) as a way to show off the device’s new form factor. “Supermodel Naomi Campbell is the first person outside of the company to wear the device in public, ahead of its full unveiling on November 9,” Humane wrote.

The company describes the device as a “screenless, standalone device and software platform built from the ground up for AI.” It’s powered by an “advanced” Qualcomm Snapdragon platform and equipped with a mini-projector that takes the place of a smartphone screen, along with a camera and speaker. It can perform functions like AI-powered optical recognition, but is also supposedly “privacy-first” thanks to qualities like no wake word and thus no “always on” listening.”

Oct 3, 2023

Longitudinal analysis of blood markers reveals progressive loss of resilience and predicts ultimate human lifespan limit

Posted by in categories: biotech/medical, life extension, wearables

150 YEARS MAXIMUM BIOLOGICAL AGE — “We observed, that the age-dependent population DOSI distribution broadening could be explained by a progressive loss of physiological resilience measured by the DOSI auto-correlation time. Extrapolation of this trend suggested that DOSI recovery time and variance would simultaneously diverge at a critical point of 120 − 150 years of age corresponding to a complete loss of resilience. The observation was immediately confirmed by the independent analysis of correlation properties of intraday physical activity levels fluctuations collected by wearable devices. We conclude that the criticality resulting in the end of life is an intrinsic biological property of an organism that is independent of stress factors and signifies a fundamental or absolute limit of human lifespan.”


We investigated the dynamic properties of the organism state fluctuations along individual aging trajectories in a large longitudinal database of CBC measurements from a consumer diagnostics laboratory. To simplify the analysis, we used a log-linear mortality estimate from the CBC variables as a single quantitative measure of aging process, henceforth referred to as dynamic organism state index (DOSI). We observed, that the age-dependent population DOSI distribution broadening could be explained by a progressive loss of physiological resilience measured by the DOSI auto-correlation time. Extrapolation of this trend suggested that DOSI recovery time and variance would simultaneously diverge at a critical point of 120 − 150 years of age corresponding to a complete loss of resilience. The observation was immediately confirmed by the independent analysis of correlation properties of intraday physical activity levels fluctuations collected by wearable devices. We conclude that the criticality resulting in the end of life is an intrinsic biological property of an organism that is independent of stress factors and signifies a fundamental or absolute limit of human lifespan.

P.O. Fedichev is a shareholder of Gero LLC. A.Gudkov is a member of Gero LLC Advisory Board. T.V. Pyrkov, K. Avchaciov, A.E. Tarkhov, L. Menshikov, and P.O. Fedichev are employees of Gero LLC.

Oct 1, 2023

A new wearable sensor can monitor sweat in real time

Posted by in categories: biotech/medical, food, health, wearables

The patch can calibrate the glucose measurements based on the pH and temperature changes in sweat due to factors such as exercise and eating.

A team of researchers at Penn State has developed a new wearable patch that can monitor your health by analyzing your sweat. The patch, which is made of a special material that can detect glucose, pH, and temperature in sweat, can provide valuable information about your body’s condition and help diagnose and manage diseases such as diabetes.


Credit: Kate Myers/Penn State.

Continue reading “A new wearable sensor can monitor sweat in real time” »

Sep 28, 2023

This robotic exoskeleton can help runners sprint faster

Posted by in categories: cyborgs, robotics/AI, wearables

It encourages wearers to take more steps, covering distances more quickly than they could without it.

A wearable exoskeleton can help runners increase their speed by encouraging them to take more steps, allowing them to cover short distances more quickly.

While previous studies have focused on how wearable exoskeletons can help people reduce the energy they expend while running, the new study, published today in Science Robotics, examines how wearable robots can assist runners as they sprint.

Sep 28, 2023

Scientists develop 3D-printed epifluidic electronic skin

Posted by in categories: biotech/medical, chemistry, health, robotics/AI, wearables

In a recent study published in Science Advances, researchers from the California Institute of Technology, led by Dr. Wei Gao, have developed a machine learning (ML)–powered 3D-printed epifluidic electronic skin for multimodal health surveillance. This wearable platform enables real-time physical and chemical monitoring of health status.

Wearable health devices have the potential to revolutionize the medical world, offering tracking, personalized treatments, and early diagnosis of diseases.

However, one of the main challenges with these devices is that they don’t track data at the molecular level, and their fabrication is challenging. Dr. Gao explained why this served as a motivation for their team.

Sep 27, 2023

Stanford’s new microchip could put powerful AI on your devices

Posted by in categories: health, robotics/AI, wearables

Aside from faster results, edge computing has the added benefit of increased privacy: If your health information never leaves your wearable, you don’t have to worry about someone else intercepting it — or interfering with it — en route.

So why do we run these apps in the cloud, instead of locally? The problem is that wireless devices have limited processing power and battery — to run a more advanced and energy-intensive AI program, you may have to turn to huge servers in the cloud.

A Stanford-led team has now unveiled NeuRRAM, a new microchip that could let us run advanced AI programs directly on our devices.

Sep 27, 2023

Putting On The Most Advanced Brain Scan Helmet Known to Man (Kernel Neuroscience fNIRS Helmet)

Posted by in categories: health, neuroscience, wearables

Dr. Cody Visits Kernel Neuroscience Headquarters and tries on the Kernel Flow.

►►► INSTAGRAM (Behind The Scenes with Cody Rall MD):
https://www.instagram.com/codyrall_techforpsych/

Continue reading “Putting On The Most Advanced Brain Scan Helmet Known to Man (Kernel Neuroscience fNIRS Helmet)” »

Sep 26, 2023

Brain implants may get a broadband boost with new approach

Posted by in categories: computing, neuroscience, wearables

Researchers have proposed employing wireless neural implants to execute communication between the human brain and computers.

Purdue University researchers have unveiled a new method that may enable a compact brain-implanted sensor to sense and transmit data to a wearable device shaped like headphones.

Sep 25, 2023

LLNL and Meta engineers develop 3D-printed material with potential for more lifelike wearables

Posted by in categories: biological, wearables

Engineers and chemists at Lawrence Livermore National Laboratory (LLNL) and Meta have developed a new kind of 3D-printed material capable of replicating characteristics of biological tissue, an advancement that could impact the future of “augmented humanity.”

In a paper recently published in the journal Matter, LLNL and Meta researchers describe a framework for creating a “one-pot” 3D-printable resin in which light is used to pattern smooth gradients in stiffness to approximate gradients found in biology, such as where bone meets muscle.

The framework addresses a key challenge in developing more lifelike wearables: “mechanical mismatch.” Whereas natural tissues are soft, electronic devices are usually made of rigid materials and it can be difficult and time-consuming to assemble such devices using traditional means.

Continue reading “LLNL and Meta engineers develop 3D-printed material with potential for more lifelike wearables” »

Sep 2, 2023

A smart color-changing flexible battery with ultra-high efficiency

Posted by in categories: energy, wearables

With the rapid growth of the smart and wearable electronic devices market, smart next-generation energy storage systems that have energy storage functions as well as additional color-changing properties are receiving a great deal of attention. However, existing electrochromic devices have low electrical conductivity, leading to low efficiency in electron and ion mobility, and low storage capacities. Such batteries have therefore been limited to use in flexible and wearable devices.

On August 21, a joint research team led by Professor Il-Doo Kim from the KAIST Department of Materials Science and Engineering (DMSE) and Professor Tae Gwang Yun from the Myongji University Department of Materials Science and Engineering announced the development of a smart electrochromic Zn-ion battery that can visually represent its charging and discharging processes using an electrochromic polymer anode incorporated with a “π-bridge spacer,” which increases electron and efficiency.

Their research was published as an inside cover article for Advanced Materials on August 3 under the title, “A π-Bridge Spacer Embedded Electron Donor-Acceptor Polymer for Flexible Electrochromic Zn-Ion Batteries.”

Page 14 of 72First1112131415161718Last