Archive for the ‘virtual reality’ category: Page 4

Dec 18, 2023

Q&A: Bringing virtual reality to nuclear and particle physics

Posted by in categories: computing, education, particle physics, virtual reality

Virtual reality, or VR, is not just for fun-filled video games and other visual entertainment. This technology, involving a computer-generated environment with objects that seem real, has found many scientific and educational applications as well.

Sean Preins, a doctoral student in the Department of Physics and Astronomy at the University of California, Riverside, has created a VR application called VIRTUE, for “Virtual Interactive Reality Toolkit for Understanding the EIC,” that is a game changer in how particle and nuclear physics data can be seen.

Made publicly available on Christmas Day, VIRTUE can be used to visualize experiments and simulated data from the upcoming Electron-Ion Collider, or EIC, a planned major new nuclear physics research facility at Brookhaven National Lab in Upton, New York. EIC will explore mysteries of the “strong force” that binds the atomic nucleus together. Electrons and ions, sped up to almost the speed of light, will collide with one another in the EIC.

Dec 12, 2023

Is Consciousness First in Virtual Reality?

Posted by in categories: neuroscience, physics, virtual reality

The prevailing scientific paradigm is that matter is primary and everything, including consciousness can be derived from the laws governing matter. Although the scientific explanation of consciousness on these lines has not been realized, in this view it is only a matter of time before consciousness will be explained through neurobiological activity in the brain, and nothing else. There is an alternative view that holds that it is fundamentally impossible to explain how subjectivity can arise solely out of material processes-“the hard problem of consciousness”-and instead consciousness should be regarded in itself as a primary force in nature. This view attempts to derive, for example, the laws of physics from models of consciousness, instead of the other way around. While as scientists we can understand and have an intuition for the first paradigm, it is very difficult to understand what “consciousness is primary” might mean since it has no intuitive scientific grounding. Here we show that worlds experienced through virtual reality (VR) are such that consciousness is a first order phenomenon. We discuss the Interface Theory of Perception which claims that in physical reality perceptions are not veridical and that we do not see the “truth” but that perception is based on evolutionary payoffs. We show that this theory may provide an accurate description of perception and consciousness within VR, and we put forward an experimental study that could throw light on this. We conclude that VR does offer an experimental frame that provides intuition with respect to the idea that “consciousness is first” and what this might mean regarding the perceived world. However, we do not draw any conclusions about the veracity of this notion with respect to physical reality or question the emergence of consciousness from brain function.

Keywords: consciousness; interface theory of perception; perception; presence; real vs. virtual; virtual reality.

Copyright © 2022 Slater and Sanchez-Vives.

Dec 12, 2023

Phantom touch: Virtual reality can induce a mysterious tactile illusion, scientists find

Posted by in categories: neuroscience, virtual reality

In a new study published in Scientific Reports, researchers have uncovered a phenomenon known as the “phantom touch illusion,” where individuals experience tactile sensations without actual physical contact in a virtual reality (VR) setting. This intriguing discovery raises questions about how the brain processes sensory information.

Previous research has shown that our nervous system can differentiate between self-generated touch and touch from external sources, a process often described as tactile gating. This ability helps us understand our interactions with the world around us.

When you perform an action that results in self-touch, your brain anticipates this contact. It knows that the sensation is a result of your own movement. Because of this anticipation, the brain ‘turns down the volume’ on the sensory response. Essentially, it partially “cancels” or gates out the sensation because it’s expected and self-generated. This is why you can’t effectively tickle yourself – your brain knows the touch is coming and reduces the response.

Dec 11, 2023

IHMC’s Nadia: A task-ready humanoid robot with a boxing edge

Posted by in categories: military, robotics/AI, space travel, virtual reality

In the exercise, an engineer equipped with a set of virtual reality (VR) goggles is orchestrating the robot’s actions.

Advanced proposition.

Continue reading “IHMC’s Nadia: A task-ready humanoid robot with a boxing edge” »

Nov 26, 2023

The Fermi Paradox Compendium of Solutions & Terms

Posted by in categories: asteroid/comet impacts, existential risks, information science, media & arts, neuroscience, singularity, sustainability, time travel, virtual reality

Go to to get 20 to 50% off sitewide! Brought to you by Raycon.
In the grand theater of the cosmos, amidst a myriad of distant suns and ancient galaxies, the Fermi Paradox presents a haunting silence, where a cacophony of alien conversations should exist. Where is Everyone? Or are we alone?

Visit our Website:
Join Nebula:
Support us on Patreon:
Support us on Subscribestar:
Facebook Group:
Twitter: on Twitter and RT our future content.
SFIA Discord Server:

Continue reading “The Fermi Paradox Compendium of Solutions & Terms” »

Nov 22, 2023

Meta Just Achieved Mind Reading with AI: A Breakthrough in Brain-Computer Interface Technology

Posted by in categories: biotech/medical, neuroscience, robotics/AI, virtual reality

Meta, the parent company of Facebook, has made a groundbreaking development in brain-computer interface technology. They have unveiled an AI system that can decode visual representations and even “hear” what someone is hearing by studying their brainwaves. These advancements in brain-machine interface technology have the potential to transform our relationship with artificial intelligence and its potential applications in healthcare, communication, and virtual reality.

The University of Texas at Austin has developed a new technology that can translate brain activity into written text without surgical implants. This breakthrough uses functional Magnetic Resonance Imaging (fMRI) scan data to reconstruct speech. An AI-based decoder then creates text based on the patterns of neuronal activity that correspond to the intended meaning. This new technology could help people who have lost the ability to speak due to conditions such as stroke or motor neuron disease.

Despite the fMRI having a time lag, which makes tracking brain activity in real-time challenging, the decoder was still able to achieve impressive accuracy. The University of Texas researchers faced challenges in dealing with the inherent “noisiness” of brain signals picked up by sensors, but by employing advanced technology and machine learning, they successfully aligned representations of speech and brain activity. The decoder works at the level of ideas and semantics, providing the gist of thoughts rather than an exact word-for-word translation. This study marks a significant advance in non-invasive brain decoding, showcasing the potential for future applications in neuroscience and communication.

Nov 15, 2023

Artificial sensor similar to a human fingerprint that can recognize fine fabric textures

Posted by in categories: biotech/medical, cyborgs, robotics/AI, virtual reality

An artificial sensory system that is able to recognize fine textures—such as twill, corduroy and wool—with a high resolution, similar to a human finger, is reported in a Nature Communications paper. The findings may help improve the subtle tactile sensation abilities of robots and human limb prosthetics and could be applied to virtual reality in the future, the authors suggest.

Humans can gently slide a finger on the surface of an object and identify it by capturing both static pressure and high-frequency vibrations. Previous approaches to create artificial tactile for sensing physical stimuli, such as pressure, have been limited in their ability to identify real-world objects upon touch, or they rely on multiple sensors. Creating a artificial sensory system with high spatiotemporal resolution and sensitivity has been challenging.

Chuan Fei Guo and colleagues present a flexible slip sensor that mimics the features of a human fingerprint to enable the system to recognize small features on surface textures when touching or sliding the sensor across the surface. The authors integrated the sensor onto a prosthetic human hand and added machine learning to the system.

Nov 14, 2023

Glasses use sonar, AI to interpret upper body poses in 3D

Posted by in categories: augmented reality, health, robotics/AI, virtual reality, wearables

Throughout history, sonar’s distinctive “ping” has been used to map oceans, spot enemy submarines and find sunken ships. Today, a variation of that technology – in miniature form, developed by Cornell researchers – is proving a game-changer in wearable body-sensing technology.

PoseSonic is the latest sonar-equipped wearable from Cornell’s Smart Computer Interfaces for Future Interactions (SciFi) lab. It consists of off-the-shelf eyeglasses outfitted with micro sonar that can track the wearer’s upper body movements in 3D through a combination of inaudible soundwaves and artificial intelligence (AI).

With further development, PoseSonic could enhance augmented reality and virtual reality, and track detailed physical and behavioral data for personal health, the researchers said.

Nov 10, 2023

VR mental health platform XRHealth blasts off with NASA

Posted by in categories: space, virtual reality

XRHealth, HTC Vive and Nord-Space Aps engineered the Vive Focus 3 headset to withstand microgravity conditions to help treat astronauts’ mental health in space.

Nov 8, 2023

Machine learning gives users ‘superhuman’ ability to open and control tools in virtual reality

Posted by in categories: robotics/AI, transportation, virtual reality

Researchers have developed a virtual reality application where a range of 3D modeling tools can be opened and controlled using just the movement of a user’s hand.

The researchers, from the University of Cambridge, used machine learning to develop ‘HotGestures’—analogous to the hot keys used in many desktop applications.

HotGestures give users the ability to build figures and shapes in without ever having to interact with a menu, helping them stay focused on a task without breaking their train of thought.

Page 4 of 10012345678Last