I recently began studying David Criswell’s Lunar Solar Power concept. If I was a conspiracy theory type I would say investigate Elon Musk. About the time Elon decided to go into space instead of into solar power, David was proclaiming he could solve the Earth’s energy problems by beaming microwave energy to Earth from the Moon. My suspicion is that Musk is building a microwave deathstar weapon on the Moon. Think about it, he has tested these rockets and they seem to work fine but how many has he built somewhere in secret and put on ships to launch from the poles? There may be space-x factories on the lunar poles busily building solar energy converters and microwave antennae fields and fabricating the gargantuan constructs necessary to be launched from the Moon and put in geostationary Earth orbit as relay stations. Darth Musk may be building Criswell’s system with a slight improvement- the microwaves can be focused on the Earth in catastrophic concentrations. This guy is the anti-christ; he will be able to conquer any country, even the United States, by using these geostationary microwave transmitters to incinerate any target on the surface of the Earth. The point being that there will be no reason to destroy a nation when you can sell them cheap electricity instead. In this concept, the armed forces of the planet also control the power supplies to the planet through a network of super power battle stations. The trick is building these giant space fortress power relay stations on the Moon and launching them into geostationary Earth orbit. This lunar launch technique would take advantage of beam propulsion and also insert into geostationary orbit using power beamed from the Moon. As soon as the power is available from geostationary orbit then powering a vehicle from the surface to escape velocity becomes practical. These launch vehicles will most likely be in the form of a disc; flying saucers. The Flying Saucer Airlines will finally whisk thousands and then millions of people into the heavens. It would be better if the government would set up this giant power system that will so forever and completely solve the Energy problems of Earth.
Category: sustainability – Page 647
Note: The below is exclusively about the United States of America, yet the theme is international.
Each time an extreme weather event takes place humanity is reminded again that basic preparation for an off-grid experience did not take place across large swaths of an affected population. Ironically, it does not begin to take place, publicly and en masse, after the event.
Saving humanity will have a lot to do with teaching a kid to build a fire, in the near term. More esoteric “preservers” and “shields” have their place, but “Scout” knowledge can produce immediate quantitative and qualitative improvements in humanity’s survival capabilities, fast.
After weather-induced disasters, our tendency is toward construction of physical things – better towers, more resilient dams, improved architecture. Seldom do we do anything to improve ourselves. Thousands remain helpless and dependent in the face of the Hurricane “Sandy” aftermath.
We have the resources in abundance to mobilize a citizenry education program. Many veterans have expert-level qualifications in survival training, for example, and with Internet and iPads their knowledge could be disseminated to every public school auditorium and town hall equipped with electricity at nominal cost, while also providing the instructors with competitive compensation.
To practice and train in the practical skills of preparedness, schools, towns, cities and parks could coordinate to deliver on- and off-site programs all citizens could reasonably take part in over a specified period of time. The goal should be to ensure within a specific time frame every citizen is aware of and able to employ a holistic set of preparedness actions in the event of an emergency. It’s a simple, clear and achievable objective.
It is what we do or fail to do as a society and as individuals to prepare for and learn from risk events that makes them more or less harmful now and in the future. The “existential risk” of extreme weather events, or extreme geological events, or terror events or financial avalanche, or their compounding, barring total annihilation, is the systemic and chronic damage which mutilates the fabric of society over time, making us weaker each time we face a new emergency, and also more prone to creating a new emergency or failing to prepare adequately for the next.
A citizen-wide preparedness program for unplanned emergency off-grid events could be designed for fun, building of comradery and orientation of adults and children toward a grounded, active, positive engagement with a highly variable world, thus doing much to off-set the negative impacts of an increasingly disaster prone environment and also much to build a more internally cohesive society. The literal ROA for investment in citizen preparedness should be exponential if the programming is organized with care, especially when including and evaluating the investment into human capital as an asset class. The very act of addressing how we handle disaster will diminish the potential for disaster itself.
A more self-sufficient and stable citizenry would help to increase public wealth and decrease public debt by limiting or eliminating the public expenditures made after an emergency (through the Federal Emergency Management Agency or through deployment of the military for example). Insurance claims of many types would decrease, new markets for sustainable goods and services would emerge, and dependence for survival upon non-sustainable resources like fossil fuels and coal-powered electricity would be tempered, all with increasing measure and positive impact over time.
A logical step for such a program would be for a public official of rank to announce it as a national priority. This could set a helpful tone of willingness, support or mandate. Local councils and agencies could also come together in confederation and create the same effect. Organizations disposed to the dispensation of preparedness skill sets could also use this time to create momentum.
Becoming competent in the ability to intelligently face adverse conditions is the most important skill required in society today. Until the time when all or a majority of people are able to act with sustained rationality and functionality in an unfamiliar situation or emergency, systems will continue to decay or collapse faster than ability to repair damage or survive impact peaceably.
Recently I attended the AIAA Rocky Mountain Region’s First Annual Technical Symposium, October 26, 2012. Link to Symposium Photos, here. Link to Symposium Presentations, here.
I must congratulate many of the presenters, our youth, our next generation leaders, for thinking outside the box. And I congratulate their supervisors, advisors and team members for facilitating a supportive environment that nurtures outside the box thinking.
Here is why. Several remarkable papers were presented. For example, Tom Joslyn (Lt. Col, PhD) presented “Use of Liquid Droplet Stream Momentum Transfer for Lunar and Interplanetary Missions”. By using liquid droplets to conserve and transfer momentum between the momentum storage spacecraft and the lunar landing spacecraft, one could reduce the LEO mass from 200,000 kg to 24,500 kg. The presentation wasn’t about theory. It was about the how such a concept would be Engineering Feasible. The type of liquids required, and the ejection and capture systems required. That is impressive.
Second, “Cockpit of the Future” by the Capstone Team. They presented many new concepts like Palm Piloteer, haptic feedback suits, wrap around displays and seat designs.
Third, I could not decide which was better, Sibylle Walter’s “GoJett: A Supersonic Unmanned Aerial Flight System” and James French’s “A Self-Refueling Mars Airplane”, both were excellent and engineering focused.
Once, again, I am so glad to see our youth thinking outside the box. They are examples of the type of outside the box thinking required to achieve interstellar travel. They are not harping on old failed concepts but moving forward on new concepts, new techniques, new designs, and new prototypes. They will change our world. Congratulations.
May they live long and prosper.
—————————————————————————————————
Benjamin T Solomon is the author & principal investigator of the 12-year study into the theoretical & technological feasibility of gravitation modification, titled An Introduction to Gravity Modification, to achieve interstellar travel in our lifetimes. For more information visit iSETI LLC, Interstellar Space Exploration Technology Initiative.
Solomon is inviting all serious participants to his LinkedIn Group Interstellar Travel & Gravity Modification.
It may have gone unnoticed to most, but the first expedition for mankind’s first permanent undersea human colony will begin in July of next year. These aquanauts represent the first humans who will soon (~2015) move to such a habitat and stay with no intention of ever calling dry land their home again. Further details: http://underseacolony.com/core/index.php
Of all 100 billion humans who have ever lived, not a single human has ever gone undersea to live permanently. The Challenger Station habitat, the largest manned undersea habitat ever built, will establish the first permanent undersea colony, with aspirations that the ocean will form a new frontier of human colonization. Could it be a long-term success?
The knowledge gained from how to adapt and grow isolated ecosystems in unnatural environs, and the effects on the mentality and social well-being of the colony, may provide interesting insights into how to establish effective off-Earth colonies.
One can start to pose the questions — what makes the colony self-sustainable? What makes the colony adaptive and able to expand its horizons. What socio-political structure works best in a small inter-dependent colony? Perhaps it is not in the first six months of sustainability, but after decades of re-generation, that the true dynamics become apparent.
Whilst one does not find a lawyer, a politician or a management consultant on the initial crew, one can be assured if the project succeeds, it may start to require other professions not previously considered. At what size colony does it become important to have a medical team, and not just one part-time doctor. What about teaching skills and schooling for the next generation to ensure each mandatory skill set is sustained across generations. In this light, it could become the first social project in determining the minimal crew balance for a sustainable permanent off-Earth Lifeboat. One can muse back to the satire of the Golgafrincham B Ark in Hitch-Hiker’s Guide to the Galaxy, where Golgafrinchan Telephone Sanitisers, Management Consultants and Marketing executives were persuaded that the planet was under threat from an enormous mutant star goat, packed in Ark spaceships, and sent to an insignificant planet… which turned out to be Earth. It provides us a satirical remind that the choice of crew and colony on a real Lifeboat would require utmost social research.
A recent article in Science Daily reported on efforts to measure Cesium-137 and Cesium-134 in bottom dwelling fish off the east coast of Japan to understand the lingering effects and potential public health implications. As the largest accidental release of radiation to the ocean in history, it is not surprising that many demersal fish are found above the limits for seafood consumption. What is more significant is that the contamination in almost all classifications of fish are not declining — suggesting that contaminated sediment on the seafloor could be providing a continuing source. This raises a concern that fallouts from any further nuclear accidents would aggregate over time.
One would question if the IAEA is taking a strong enough position on the permitted location of nuclear power stations. It perplexes me that the main objections to Iran attaining nuclear power are strategic/military. Whilst Iran is not at risk to the threat of tsunamis as Japan is, Iran is one of the most seismically active countries in the world, where destructive earthquakes often occur. This is because it is crossed by several major fault lines that cover at least 90% of the country. How robust are nuclear power stations to a major quake? The IAEA needs to expand its role to advise countries on what regions it would be unsuitable to build nuclear power stations — such as Iran and Japan. Otherwise we are risking a lasting environmental impact to eventually occur — it is only a matter of time.
How the Diablo Canyon nuclear plant, which sits just miles away from the notoriously active San Andreas fault was allowed to be located there let alone operate for a year and half with its emergency systems disabled (according to a 2010 safety review by the federal Nuclear Regulatory Commission). It seems as if there’s a missing link worldwide between the IAEA and regional planning authorities. Or perhaps it is simply down to responsible government.
To achieve interstellar travel, the Kline Directive instructs us to be bold, to explore what others have not, to seek what others will not, to change what others dare not. To extend the boundaries of our knowledge, to advocate new methods, techniques and research, to sponsor change not status quo, on 5 fronts:
1. Legal Standing. 2. Safety Awareness. 3. Economic Viability. 4. Theoretical-Empirical Relationship. 5. Technological Feasibility.
Interstellar Challenge Matrix (Partial Matrix)
Propulsion Mechanism | Legal? | Costs Estimates |
Conventional Fuel Rockets: | Yes | Greater than US$1.19E+14 |
Antimatter Propulsion: | Do Not Know. | Between US$1.25E+20 and US$6.25E+21 |
Atomic Bomb Pulse Detonation: | Illegal. This technology was illegal as of 1963 per Partial Test Ban Treaty | Between $2.6E12 and $25.6E12 . These are Project Orion original costs converted back to 2012 dollar. Requires anywhere between 300,000 and 30,000,000 bombs!! |
Time Travel: | Do Not Know. | Requires Exotic Matter, therefore greater than antimatter propulsion costs of US$1.25E+20 |
Quantum Foam Based Propulsion: | Do Not Know. | Requires Exotic Matter, therefore greater than antimatter propulsion costs of US$1.25E+20 |
Small Black Hole Propulsion: | Most Probably Illegal in the Future | Using CERN to estimate. At least US$9E+9 per annual budget. CERN was founded 58 years ago in 1954. Therefore a guestimate of the total expenditure required to reach its current technological standing is US$1.4E11. |
Note Atomic Bomb numbers were updated on 10/18/2012 after Robert Steinhaus commented that costs estimates “are excessively high and unrealistic”. I researched the topic and found Project Orion details the costs, of $2.6E12 to $25.6E12, which are worse than my estimates.
These costs are humongous. The Everly Brothers said it the best.
Let’s step back and ask ourselves the question, is this the tool kit we have to achieve interstellar travel? Are we serious? Is this why DARPA — the organization that funds many strange projects — said it will take more than a 100 years? Are we not interested in doing something sooner? What happened to the spirit of the Kline Directive?
From a space exploration perspective economic viability is a strange criterion. It is not physics, neither is it engineering, and until recently, the space exploration community has been government funded to the point where realistic cost accountability is nonexistent.
Don’t get me wrong. This is not about agreeing to a payment scheme and providing the services as contracted. Government contractors have learned to do that very well. It is about standing on your own two feet, on a purely technology driven commercial basis. This is not an accounting problem, and accountants and CFOs cannot solve this. They would have no idea where to start. This is a physics and engineering problem that shows up as an economic viability problem that only physicists and engineers can solve.
The physics, materials, technology and manufacturing capability has evolved so much that companies like Planetary Resources, SpaceX, Orbital Sciences Corp, Virgin Galactic, and the Ad Astra Rocket Company are changing this economic viability equation. This is the spirit of the Kline Directive, to seek out what others would not.
So I ask the question, whom among you physicist and engineers would like to be engaged is this type of endeavor?
But first, let us learn a lesson from history to figure out what it takes. Take for example DARPA funding of the Gallium Arsenide. “One of DARPA’s lesser known accomplishments, semiconductor gallium arsenide received a push from a $600-million computer research program in the mid-1980s. Although more costly than silicon, the material has become central to wireless communications chips in everything from cellphones to satellites, thanks to its high electron mobility, which lets it work at higher frequencies.”
In the 1990s Gallium Arsenide semiconductors were so expensive that “silicon wafers could be considered free”. But before you jump in and say that is where current interstellar propulsion theories are, you need to note one more important factor.
The Gallium Arsenide technology had a parallel commercially proven technology in place, the silicon semiconductor technology. None of our interstellar propulsion technology ideas have anything comparable to a commercially successful parallel technology. (I forgot conventional rockets. Really?) A guesstimate, in today’s dollars, of what it would cost to develop interstellar travel propulsion given that we already had a parallel commercially proven technology, would be $1 billion, and DARPA would be the first in line to attempt this.
Given our theoretical physics and our current technological feasibility, this cost analysis would suggest that we require about 10 major technological innovations, each building on the other, before interstellar travel becomes feasible.
That is a very big step. Almost like reaching out to eternity. No wonder Prof Adam Franks in his July 24, 2012 New York Times Op-Ed, Alone in the Void, wrote “Short of a scientific miracle of the kind that has never occurred, our future history for millenniums will be played out on Earth”.
Therefore, we need to communicate to the theoretical physics community that they need get off the Theory of Everything locomotive and refocus on propulsion physics. In a later blog posting I will complete the Interstellar Challenge Matrix (ICM). Please use it to converse with your physicist colleagues and friends about the need to focus on propulsion physics.
In the spirit of the Kline Directive — bold, explore, seek & change — can we identify the 10 major technological innovations? Wouldn’t that keep you awake at night at the possibility of new unthinkable inventions that will take man where no man has gone before?
PS. I was going to name the Interstellar Challenge Matrix (ICM), the Feasibility Matrix for Interstellar Travel (FMIT), then I realized that it would not catch on at MIT, and decided to stay with ICM.
Previous post in the Kline Directive series.
Next post in the Kline Directive series.
—————————————————————————————————
Benjamin T Solomon is the author & principal investigator of the 12-year study into the theoretical & technological feasibility of gravitation modification, titled An Introduction to Gravity Modification, to achieve interstellar travel in our lifetimes. For more information visit iSETI LLC, Interstellar Space Exploration Technology Initiative.
Solomon is inviting all serious participants to his LinkedIn Group Interstellar Travel & Gravity Modification.
To achieve interstellar travel, the Kline Directive instructs us to be bold, to explore what others have not, to seek what others will not, to change what others dare not. To extend the boundaries of our knowledge, to advocate new methods, techniques and research, to sponsor change not status quo, on 5 fronts:
1. Legal Standing. 2. Safety Awareness. 3. Economic Viability. 4. Theoretical-Empirical Relationship. 5. Technological Feasibility.
In this post I will explore Safety Awareness.
In the heady rush to propose academically acceptable ideas about new propulsions systems or star drives it is very easy to overlook safety considerations. The eminent cosmologist Carl Sagan said it best “So the problem is not to shield the payload, the problem is to shield the earth” (Planet. Space Sci., pp. 485 – 498, 1963)
It is perfectly acceptable if not warranted to propose these technologically infeasible star drives based on antimatter and exotic matter, as academic exercises because we need to understand what is possible and why. However, we need to inform the public of the safety issues when doing so.
I do not understand how any physicist or propulsion engineer, in his/her right mind, not qualify their academic exercise in antimatter propulsion or star drive with a statement similar to Carl Saga’s. At the very least it gets someone else thinking about those safety problems, and we can arrive at a solution sooner, if one exists.
We note that the distinguished Carl Sagan did not shy away from safety issues. He was mindful of the consequences and is an example of someone pushing the limits of safety awareness in the spirit of the Kline Directive, to explore issues which others would (could?) not.
We have to ask ourselves, how did we regress? From Sagan’s let us consider all ancillary issues, to our current let us ignore all ancillary issues. The inference I am forced to come to is that Carl Sagan was a one-man team, while the rest of us lesser beings need to come together as multi-person teams to stay on track, to achieve interstellar travel.
In interstellar & interplanetary space there are two parts to safety, radiation shielding and projectile shielding. Radiation shielding is about shielding from x-ray and gamma rays. Projectile shielding is about protection from physical damage caused by small particle collisions.
I may be wrong but I haven’t come across anyone even attempting to address either problems. I’ve heard of strategies such as using very strong electric fields or even of using millions of tons of metal shielding but these are not realistic. I’ve even heard of the need to address these issues but nothing more.
Safety is a big issue that has not been addressed. So how are we going to solve this? What do we need to explore that others have not? What do we need to seek that others would not? What do we need to change, that others dare not?
Previous post in the Kline Directive series.
Next post in the Kline Directive series.
—————————————————————————————————
Benjamin T Solomon is the author & principal investigator of the 12-year study into the theoretical & technological feasibility of gravitation modification, titled An Introduction to Gravity Modification, to achieve interstellar travel in our lifetimes. For more information visit iSETI LLC, Interstellar Space Exploration Technology Initiative.
Solomon is inviting all serious participants to his LinkedIn Group Interstellar Travel & Gravity Modification.
The shift that has happened in 40 years which mainly has to do with climate change. Forty years ago, I could say in the Whole Earth Catalog, “we are as gods, we might as well get good at it”. Photographs of earth from space had that god-like perspective.
What I’m saying now is we are as gods and have to get good at it. Necessity comes from climate change, potentially disastrous for civilization. The planet will be okay, life will be okay. We will lose vast quantities of species, probably lose the rain forests if the climate keeps heating up. So it’s a global issue, a global phenomenon. It doesn’t happen in just one area. The planetary perspective now is not just aesthetic. It’s not just perspective. It’s actually a world-sized problem that will take world sized solutions that involves forms of governance we don’t have yet. It involves technologies we are just glimpsing. It involves what ecologists call ecosystem engineering. Beavers do it, earthworms do it. They don’t usually do it at a planetary scale. We have to do it at a planetary scale. A lot of sentiments and aesthetics of the environmental movement stand in the way of that.
Continue reading “We are as Gods…” and watch the video interview
At the halfway point to a climate gamble, 50 contributor ideas give just a taste of the creativity and innovation available to us
“One or other of us will have to go,” Oscar Wilde is supposed to have said on his deathbed to the hated wallpaper in his room. The perilous acceleration of Arctic ice loss, and the imminent threat of irreversible climate change poses a similar ultimatum to the economic system that is pushing us over the brink. For society’s sake I hope this time we redecorate.
Fortunately, many people are queuing up to propose better designs, rather than just cursing the interiors, as you can read about here.
Monday 1 October marks the halfway point in a 100-month countdown to a game of climate roulette.
On a very conservative estimate, 50 months from now, the dice become loaded against us in terms of keeping under a 2C temperature rise. This level matters because beyond it an environmental “domino effect” is likely to operate. In a volatile and unpredictable dynamic, things like melting ice, and the release of carbon from the planet’s surface are set to feed off each other, accelerating and reinforcing the warming effect.
The time frame follows an estimate of risk of rising greenhouse gas concentrations from the world’s leading authority on climate change, the Intergovernmental Panel on Climate Change (IPCC), that passed a certain point, it will no longer be “likely” that we stay the right side of the line. Some consider even a 2C rise too much, but it is the limit that the EU and others have signed up to.
Extraordinarily, however, in spite of the stakes, the issue has receded from the political frontline like a wave shrinking down a beach. This could, though, merely be a prelude to it returning with a vengeance. Politicians may have turned their backs, others have not.
Fukushima reawakened the world to the dangers of nuclear power, and reading back over Fearing Sellafield (2003) by Colum Kenny recently, I reflect back on how deflective and dishonest industry can be to steer clear of critical opinion. Seeing parallels suggested in other industries today, I wonder if much has really changed.
Highly Active Liquor (HAL) produced by the reprocessing of irradiated nuclear fuel at Sellafield, reached a level of 1,500 cubic meters in storage at its peak circa 2001, the capacity of a 50 meter Olympic swimming pool. Particularly unstable, a disruption to electricity & water coolant could result in such liquor boiling, overloading the ventilation filtration systems and leading to a nuclear accident. Containing about 80 times the amount released during the 1986 Chernobyl accident according to a report for the European Parliament at that time, we are rather fortunate such a serious accident never occurred. This analysis was provided by what became known as The WISE Report — so called due to associated with the World Information Service on Energy (WISE) in Paris. In response BNFL set out to reduce this liquor to a solid form known as ‘glass’ — borosilicate glass — much safer than when kept in liquid form, and put in storage — though much of it still remains to be vitrified.
In 2000/2001, the Nuclear Installations Inspectorate (NII) of the HSE published a number of reports on aspects of Sellafield that led to causes of concern. One report in particular entitled ‘an investigation into the falsification of pellet diameter data in the MOX demonstration facility at the BNFL Sellafield site and the effect of this on the safety of MOX fuel in use’ suggested deliberate dishonesty in keeping records. BNFL subsequently complied with most of these recommendations.
Authors of the WISE report however still had concerns regarding increases in levels in certain sea discharges and aerial releases, and inconsistent with the UK’s obligations under the OSPAR Convention. It stated that the deposition of plutonium within 20km of Sellafield attributable to aerial emissions has been estimated at 160–280 billion becquerels — several times the plutonium fallout from all atmospheric nuclear weapons testing, and that 250kg-500kg of plutonium from Sellafield has been absorbed as sediments on the bed of the Irish sea ‘representing a long-term regional hazard of largely unknown proportions’. The report had been treated with caution by the European Commission and conveniently dismissed by the National Radiological Protection Board in the UK by claiming that some of the conclusions drawn in the report were based on ‘lacking objectivity’. It seems that governments are always bent towards safeguarding industry first, leaving environmental concerns and the health of our Mother Ship as a secondary issue.