Toggle light / dark theme

LIMA, Peru (AP) — If human beings finally reach Mars, they may find themselves depending on the humble, if hardy potato.

Scientists in Peru have used a simulator that mimics the harsh conditions on the Red Planet to successfully grow a small potato plant.

It’s an experiment straight out of the 2015 Hollywood movie “The Martian” that scientists say may also benefit arid regions already feeling the impact of climate change.

Read more

Solar power is potentially the greatest single energy source outside of controlled nuclear fusion, but the Sun is literally a fair weather source that relies on daytime and clear skies. To make solar energy a reliable, 24-hour source of energy, a team of scientists at Sweden’s Chalmers University of Technology in Gothenburg is developing a liquid energy storage medium that can not only release energy from the Sun on demand, but is also transportable.

The Chalmers team has been working on variants of its system, called a MOlecular Solar Thermal (MOST), for over six years, with a conceptual demonstration in 2013. It differs from other attempts to store solar energy in things like heated salts and reversing exothermic reactions in that the MOST system stores the energy directly in the bonds of an organic chemical.

Join more than 500 New Atlas Plus subscribers who read our newsletter and website without ads.

Read more

Safety has been a preoccupation of consumers and carmakers for the past few decades, with some companies — like Volvo — making it their key selling point.

Automobiles are already far safer now than ever before, but advances in technology keep raising the bar for what consumers expect. And Morgan Stanley auto analyst Adam Jonas thinks the forthcoming Tesla Model 3, priced at $35,000 and expected to launch later this year, will lead the way in dramatic fashion.

Between 30,000 and 40,000 people are killed in car accidents every year in the US alone, so the stakes for drastically improved safety are high.

Read more

I can conceive that in saner circumstances, Tesla Model X might never have come to be. But the strongest blades are forged in the hottest fires, and for those that survive the heat, something very special is born.

Model X is special in a way that the automotive industry hasn’t been able to conceive in a very long time. It is an all-electric SUV that can seat up to seven people with bucketloads of cargo space to spare. It is a sporty all-wheel drive car that can throw instant and ungodly amounts of torque at the tarmac. It is a serene cruiser with its silent drive and breathtaking panoramic windshield. It is, in essence, an eight-eyed falcon with a supercomputer brain that dreams of a future of fully autonomous driving. And I had to have it.

As a Model S owner, I had already experienced and enjoyed more than a year of zero emissions Tesla driving. I knew what great things the car was capable of. I’d felt the thrill of instant torque, I’d fallen in love with the one-foot, regenerative braking driving experience, and I’d been chauffeured up and down the M1 by my very own Autopilot. Where the Model S presented itself as an all electric car — a subtle statement and proof of concept about a future of green but powerful motoring, Model X presented itself as a bold vision for what a car could be, if its only blueprint were imagination.

Read more

In the future, solar cells can become twice as efficient by employing a few smart little nano-tricks.

Researchers are currently developing the environment-friendly of the future, which will capture twice as much as the cells of today. The trick is to combine two different types of solar cells in order to utilize a much greater portion of the sunlight.

“These are going to be the world’s most efficient and environment-friendly solar cells. There are currently solar cells that are certainly just as efficient, but they are both expensive and toxic. Furthermore, the materials in our solar cells are readily available in large quantities on Earth. That is an important point,” says Professor Bengt Svensson of the Department of Physics at the University of Oslo (UiO) and Centre for Materials Science and Nanotechnology (SMN).

Read more