Toggle light / dark theme

Researchers design aqueous battery that stores solar energy better than current lithium technology.

Batteries based on water that can store the electricity that we generate from solar technology? It can now be done.

Researchers at Ohio State University have designed a device with an aqueous flow battery that is based on water as opposed to the standard lithium design of your average rechargeable batteries. It is the first aqueous flow battery to work with a solar cell and it is 20 percent more efficient than the lithium design.

Read more

The future frontier for hackers is synthetic biology.


Landmark scientific projects such as the Human Genome Project can encourage international cooperation and bring nations together. However, when security interests and defence research align with the prestige of a landmark project—international competition is all but assured. Synthetic biology is a scientific discipline less than a decade old, and the potential defence and security applications may create a new space race, this time between the USA and China.

The larger concern is not that this race may happen, but that if it does it will politicise and militarise an ethically sensitive area of the life sciences at a time when this frontier technology is critical to maintaining a sustainable world.

The Human Genome Project (HGP) cost about US$300 million (A$394 million), involved 20 international institutions and sequenced the human genome in just over a decade. The draft sequence was published in February 2001 and has driven economic, health and social benefits the world over for the last 15 years. To a very large extent this research project underpins the modern life sciences and is the equivalent of landing on the moon.

Scientists from the University of Southampton have reengineered the fundamental process of photosynthesis to power useful chemical reactions that could be used to produce biofuels, pharmaceuticals and fine chemicals.

Photosynthesis is the pivotal biological reaction on the planet, providing the food we eat, the oxygen we breathe and removing CO2 from the atmosphere.

Photosynthesis in plants and algae consists of two reactions, the light-reactions absorb light energy from the sun and use this to split water (H2O) into electrons, protons and oxygen and the dark-reactions which use the electrons and protons from the light reactions to ‘fix’ CO2 from the atmosphere into simple sugars that are the basis of the food chain. Importantly, the light reactions have a much higher capacity than the dark reactions resulting in much of the absorbed being wasted as heat rather than being used to ‘fix’ CO2.

Read more

Scientists at the Energy Department’s National Renewable Energy Laboratory (NREL) discovered a use for perovskites that runs counter to the intended usage of the hybrid organic-inorganic material.

Considerable research at NREL and elsewhere has been conducted into the use of organic-inorganic hybrid perovskites as a solar cell. Perovskite systems have been shown to be highly efficient at converting sunlight to electricity. Experimenting on a lead-halide perovskite, NREL researchers found evidence the material could have great potential for optoelectronic applications beyond photovoltaics, including in the field of quantum computers.

Today, Nature Communications published the research, Large Polarization-Dependent Exciton Optical Stark Effect in Lead Iodide Perovskites. Authors of the paper are Ye Yang, Mengjin Yang, Kai Zhu, Justin Johnson, Joseph Berry, Jao van de Lagemaat, and Matthew Beard.

Read more

As part of its new plan to build 2 to 3 million all-electric cars a year and unveil 30 new models by 2025, Volkswagen announced that they plan to debut one of these 30 new electric car models at the Paris Motor show next month.

VW CEO Hebert Diess confirmed the news in an interview with German magazine Wirtschafts Woche.

He said that the vehicle will achieve a range of 400 to 600 km (248 to 372 miles), but he could have been referring to the New European Driving Cycle (NEDC), which is much more forgiving than the EPA rating and doesn’t really reflect real-world range, but a range of ~300 miles sounds likely.

Read more

Aquila — facebook’s solar powered internet drone


The internet provides information, opportunity and human connection, yet less than half the world has access. We’re proud to announce the successful first test flight of #Aquila, the solar airplane we designed to bring internet access to people living in remote locations. This innovative plane has the wingspan of an airliner but weighs less than a small car and flies on roughly the power of three blow dryers — incredible!

Source: #facebook

35 percent efficiency.


The cost of solar power is beginning to reach price parity with cheaper fossil fuel-based electricity in many parts of the world, yet the clean energy source still accounts for slightly more than 1% of the world’s electricity mix.

To boost global solar power generation, researchers must overcome some of the technological limitations that are preventing solar power from scaling up even further, which includes the inability to develop very high-efficiency solar cells – solar cells capable of converting a significant amount of sunlight into usable electrical energy – at very low costs.

A team of researchers from the Masdar Institute and the Massachusetts Institute of Technology (MIT) may have found a way around the seemingly inseparable high-efficiency and high-cost linkage through an innovative multi-junction solar cell that leverages a unique “step-cell” design approach and low cost silicon. The new step-cell combines two different layers of sunlight-absorbing material to harvest a broader range of the sun’s energy while using a novel, low-cost manufacturing process.

Cannot wait for this material so that I can finally enjoy my run in the park near my US home in August.


WASHINGTON — Engineers have created clothing for a warming world — a fabric that allows your body heat to escape far better than other materials do.

It hasn’t been worn or tested by humans, so outside experts caution this is far from a sure thing, but a team at Stanford University engineered a fabric using nano technology that not only allows moisture to leave the body better, but helps infrared radiation escape better. As a result, they say in Thursday’s journal Science, the body should feel around 4.8 degrees (2.7 degrees Celsius) cooler than cotton and 3.8 degrees (2.1 degrees Celsius) chillier than commercially available synthetics.

This is designed for a warmer world — not just because climate change is making temperatures hotter, but because it takes a lot of energy to heat and cool people’s offices and homes, said study lead author Yi Cui, a professor of materials and engineering.