It will allow port operators to transport cargo containers hundreds of kilometers in minutes.
Category: sustainability – Page 451
Tesla Gigafactory Texas is taking shape in new drone flyover video
A new drone flyover of Tesla Gigafactory Texas is showing some great progress, and it’s even starting to look like the render of the finished building.
The start of production at Gigafactory Texas and Gigafactory Berlin is the most important thing for Tesla’s growth this year.
Starting production in any vehicle program is always difficult, and even more so when you are building a brand new factory from scratch.
Tesla Launches Megapack Order Page & Pricing
According to the order page, the price in California starts at $1235, 890, and Tesla requires $5000 down. This doesn’t include taxes or annual maintenance. Prices do vary by state. Customers can order up to 1000 Megapacks, and if they do, the costs per unit decline with each additional Megapack order.
On its website, Tesla said that it took everything it knew about battery technology to enable the world’s largest energy projects. For these giga-scale projects, a 1 gigawatt-hour (GWh) project provides enough energy storage capacity to power every home in San Francisco for 6 hours.
For those ordering the Tesla Megapack, the earliest deliveries will occur in 2022, but not for all states. California, Nevada, and Texas have 2022 delivery estimates, while others, including my own state of Louisiana, have 2023 estimated delivery dates. The price of the Megapack for Louisiana is $1252, 810.
Exploring Massless Energy Battery Breakthrough
Get Surfshark VPN at https://surfshark.deals/undecided and enter promo code UNDECIDED for 83% off and 3 extra months for free! What if we could take a battery pack’s weight out of the equation? Imagine a car that has no battery pack because the car’s structural battery is the pack? Let’s explore massless energy storage and how a recent breakthrough could be a dramatic shift in how we can store energy in phones, planes, cars… you name it. Watch Exploring When Solid State Batteries Will Arrive: https://youtu.be/3PyXQ0UXk9w?list=PLnTSM-ORSgi7UWp64ZlOKUPNXePMTdU4dSimulation from FLOW-3D®, developed by Flow Science, Inc. (www.flow3d.com).Video script and citations:
https://undecidedmf.com/episodes/exploring-massless-energy-b…hFollow-up podcast:
Video version — https://www.youtube.com/channel/UC4-aWB84Bupf5hxGqrwYqLA
Audio version — http://bit.ly/stilltbdfm.
👋 Support Undecided on Patreon!
https://www.patreon.com/mattferrell.
⚙️ Gear & Products I Like.
Tesla and smart home gear:
https://kit.co/undecidedmfUndecided Amazon store front:
http://bit.ly/UndecidedAmazonFun, nerdy t-shirts:
http://bit.ly/UndecidedShirtsAbstract Ocean Tesla Accessories:
15% Discount — Code: “Undecided“
http://bit.ly/UndecidedAOJeda Tesla Wireless Charger/USB Hub:
http://bit.ly/UndecidedJedaTesla Referral Code:
Get 1000 free supercharging miles.
or a discount on Tesla Solar & Powerwalls.
https://ts.la/matthew84515Visit my Energysage Portal:
Research solar panels and get quotes for free!
http://www.energysage.com/p/undecided/ Or find community solar near you:
https://communitysolar.energysage.com/?rc=p-undecided.
👉 Follow Me.
https://twitter.com/mattferrell.
https://twitter.com/undecidedMFInstagram.
https://www.instagram.com/mattferrell.
https://www.instagram.com/undecidedmfFacebook.
https://www.facebook.com/undecidedMF/Website.
https://undecidedmf.com.
📺 YouTube Tools I Recommend.
Audio file(s) provided by Epidemic Sound.
http://bit.ly/UndecidedEpidemicTubeBuddy.
https://www.tubebuddy.com/undecidedVidIQ
https://vidiq.com/undecided.
I may earn a small commission for my endorsement or recommendation to products or services linked above, but I wouldn’t put them here if I didn’t like them. Your purchase helps support the channel and the videos I produce. Thank you.
Solid State Batteries — Autumn 2021 mass production in Japan. Is it FINALLY happening?
Solid state batteries are the long-promised Holy Grail of battery technology. They’re smaller and better than existing Lithium Ion batteries. They charge more quickly and last much longer. What’s not to like? Trouble is, no-one’s managed to mass produce one at any useful scale yet. Turns out it’s quite tricky to make them reliable! Now though, two major Japanese companies are finally firing up their full production lines. So will 2021 be the year?
Video Transcripts available at our website.
http://www.justhaveathink.com.
Help support this channels independence at http://www.patreon.com/justhaveathink.
Or with a donation via Paypal by clicking here.
https://www.paypal.com/cgi-bin/webscr?cmd=_s-xclick&hosted_b…source=url.
You can also help keep my brain ticking over during the long hours of research and editing via the nice folks at BuyMeACoffee.com.
https://www.buymeacoffee.com/justhaveathink.
Download the Just Have a Think App from the AppStore or Google Play.
Cheap, sustainable, readily available plasma tech could replace rare iridium
A team led by a researcher from the University of Sydney has developed a low-cost, sustainable, and readily available technology that can dim the screens of electronic devices, anti-reflection automobile mirrors, and smart architectural windows at a fraction of the cost of current technology.
It would replace one of the world’s scarcest—yet highly ubiquitous in use—modern materials: indium. A rare chemical element, that it is widely used in devices such as smartphones and computers, windscreen glass and self-dimming windows.
Although small amounts are used to manufacture smart device screens, indium is expensive as it is hard to source; it naturally occurs only in small deposits. Industrial indium is often made as a byproduct of zinc mining, which means a shortage could occur if demand for optoelectronic devices—such as LCDs and touch panels—ramps up.
Armed guards protect tons of nuclear waste that Maine can’t get rid of
The canisters can’t stay on the 11-acre storage site on Bailey Peninsula in Wiscasset forever. And the specter of climate change and ocean level rise adds urgency to the hunt for a solution.
That’s a problem because the waste — 1400 spent nuclear fuel rods housed in 60 cement and steel canisters, plus four canisters of irradiated steel removed from the nuclear reactor when it was taken down — is safe for now, but can’t stay in Wiscasset forever.
The situation in Wiscasset underscores a thorny issue facing more than 100 communities across the U.S.: close to a hundred thousand tons of nuclear waste that has no place to go.
Securing these remnants of nuclear energy generation is an ongoing task that requires armed guards around the clock and costs Maine Yankee’s owners some $10 million per year, which is being paid for with money from the government.
Chevron’s Carbon Capture Struggle Shows Big Oil’s Climate Hurdle
“Gorgon’s failure poses a major problem for any oil and gas company betting on CCS to meet net zero,” said Ian Porter, the chairperson of Sustainable Energy Now, WA. “CCS simply does not work at the scale and at the price needed.”
(Bloomberg) — The world’s biggest project to capture and store carbon dioxide isn’t working like it should, highlighting the challenges oil companies face in tackling their greenhouse gas emissions. Chevron Corp.’s system at the $54 billion Gorgon liquefied natural gas export plant in Australi…
China unveils design for first waterless nuclear reactor
CHINA’S NEW THORIUM-BASED NUCLEAR REACTOR is well situated for being adopted for Space applications.
China is slowly but steadily positioning itself to leap ahead of the US Space program. It is doing this without pomp and fanfare, and without the idea of a “space race,” simply based upon what it requires for its future.
1) Recent noteworthy progress on molten salt thorium reactors could be a key component of future Chinese space-worthiness. Originally designed by the USA’s Oak Ridge National Laboratory in the 1960’s, they were planned to be used for nuclear powered strategic bomber planes, before the nuclear submarine concept became adopted as more feasible. They were chosen because they can be miniaturized to the size of an aircraft. By the same token, they could conceivably be used in advanced atmospheric or space propulsion.
2) Recently, China announced successful tests on a new type of aircraft that takes in air from the surrounding atmosphere, ionizes it with electricity, and expels it as exhaust. The only thing needed would be a strong enough on-board electrical supply to supply the huge amount of power required. Only a nuclear power plant could supply that power unless it were to be beamed from ground stations. Such a plane would require no fuel for its entire lifetime. It could also function in any atmosphere, not only Earth’s atmosphere, since it is not based on burning fuel chemically, which requires oxygen. Versions of such air-plasma-breathing thrust could be used as part of the boosting phase of a rocket launch system.
3) A few days ago, China tested part of its fully reusable space plane, which is a vastly superior system to SpaceX’s “Starship” rocket. While Starship uses old-fashioned ballistic rocket technology, the Chinese spaceplane, according to reports that have come out, involves something similar to the Sanger space plane design. An early version of the Space Shuttle design also had this configuration. Instead of the Space Shuttle’s dangerous solid rocket boosters on the side, and its external fuel tank, which is dumped once the fuel is used up, such systems have a second “booster aircraft” which glides to a runway after boosting the upper stage orbiter into its atmospheric launch position. So, there are two vehicles which land on a runway, with only the orbiter going into space. In addition to this, the Chinese are adding “combined cycle” technologies, where more than one type of propulsion is being used on the aircraft. So, perhaps turbojets, and scramjets, and rocket engines will be used as one example of such a configuration.
The new molten salt reactors, part of a program developed under the leadership of former Chinese President Zemin’s son, and with collaboration from the US’s Oakridge National Laboratory, is now close to implementation stage. Such reactors could be integrated into a space plane, allowing “single-stage-to-orbit” concepts to become within reach. Such systems would not need a booster phase, but would use a combination of air-plasma-breathing and rocket engines to get to orbit with only a single vehicle, while landing like the Space Shuttle did or perhaps landing with powered flight instead of gliding without fuel as did the Shuttle.
All of this makes China’s plan for “nuclear-powered space shuttles” in the 2040’s very possible. If fusion power is obtained before then, this will all proceed even faster, and all the technical and engineering skills will be immediately brought to bear.