Toggle light / dark theme

NASA’s Perseverance Rover Produces Oxygen on Mars – Key “First” for Human Exploration of the Red Planet

The milestone, which the MOXIE instrument achieved by converting carbon dioxide into oxygen, points the way to future human exploration of the Red Planet.

The growing list of “firsts” for Perseverance, NASA ’s newest six-wheeled robot on the Martian surface, includes converting some of the Red Planet’s thin, carbon dioxide-rich atmosphere into oxygen. A toaster-size, experimental instrument aboard Perseverance called the Mars Oxygen In-Situ Resource Utilization Experiment (MOXIE) accomplished the task. The test took place April 20, the 60th Martian day, or sol, since the mission landed on February 18.

While the technology demonstration is just getting started, it could pave the way for science fiction to become science fact – isolating and storing oxygen on Mars to help power rockets that could lift astronauts off the planet’s surface. Such devices also might one day provide breathable air for astronauts themselves. MOXIE is an exploration technology investigation – as is the Mars Environmental Dynamics Analyzer (MEDA) weather station – and is sponsored by NASA’s Space Technology Mission Directorate (STMD) and Human Exploration and Operations Mission Directorate.

NASA’s Perseverance Rover Just Turned Martian CO2 Into Oxygen

Oxygen isn’t just the stuff we breathe. Rocket propellant depends on oxygen, and future explorers will depend on producing propellant on Mars to make the trip home.


The instrument, called the Mars Oxygen In-Situ Resource Utilization Experiment (MOXIE), is a technology demonstration that could eventually be scaled up to produce enough propellant to enable a crew of astronauts to take off from the surface of the Red Planet.

“This is a critical first step at converting carbon dioxide to oxygen on Mars,” said Jim Reuter, associate administrator of NASA’s Space Technology Mission Directorate (STMD), in a statement. “MOXIE has more work to do, but the results from this technology demonstration are full of promise as we move toward our goal of one day seeing humans on Mars.”

“Oxygen isn’t just the stuff we breathe,” he added. “Rocket propellant depends on oxygen, and future explorers will depend on producing propellant on Mars to make the trip home.”

Da Vinci And Sikorsky Also Deserve Credit For NASA’s Mars Helicopter

With NASA’s historic solar-powered helicopter flight over the barren slopes of Mars’ Jezero Crater, Leonardo da Vinci and Igor Sikorsky also deserve credit along with the Wright brothers for enabling this astounding bit of off-world powered, controlled flight. Da Vinci made one of the earliest drawings of a rotor-driven aircraft and Sikorsky built the U.S.’ first commercially viable helicopter.

Even though Orville and Wilbur Wright get credit for making the first powered, controlled aircraft flight at Kitty Hawk, North Carolina in 1903, the vertical flight of helicopters is markedly different. Thus, the first test flight of NASA’s Ingenuity helicopter is all the more astounding in no small part because Mars’ atmosphere is only one percent that of Earth.

“While these two iconic moments in aviation history may be separated by time and 173 million miles of space, they now will forever be linked,” NASA Associate Administrator for Science Thomas Zurbuchen said in a statement. “As an homage to the two innovative bicycle makers from Dayton, this first of many airfields on other worlds will now be known as Wright Brothers Field, in recognition of the ingenuity and innovation that continue to propel exploration.”

Approaching a Singularity, When The Number of Humans Alive Will Equal The Number Who Have Ever Died

There are several key technologies converging on an inevitable effect, namely a dramatic, explosive increase in human population. Currently around 40% of Earth’s total land area is dedicated to agricultural production to feed seven billion people, but, interestingly, while the human population will increase, the land area required to sustain this population will decrease, approaching zero land area to sustain a trillion human lives. In this era, bulk elements such as gold will have no value, since they will be so easy to produce by fusion separation of elements from bulk rock. Instead, value will be attached to biological material and, most importantly, new technologies themselves.

The several key emerging technologies that make this state of affairs unstoppable are listed along with aspects of their impact:

1) Most important is fusion energy, an unlimited, scalable energy, with no special fuel required to sustain it. This will allow nearly all agriculture to be contained in underground “vertical farm” buildings, extending thousands of feet downwards. Cheap artificially-lighted, climate-controlled environments will allow the maximum efficiency for all food crops. Thus, agriculture will take up close to zero surface area, largely produced underground on Earth or the Moon.

2) Crispr-gene edited foods, allowing the transformation of thousands of currently inedible plants into new types of fruits, vegetables and cereals, while also allowing diversity of currently-existing ones. Everything people eat has been genetically modified by thousands of years of human cultivation; that modification will take place over several years instead of thousands.

3) Acellular agriculture, where yeasts are bioengineered to produce milk and other proteins without any live mammals. Products using this method began to enter the market in 2020.

4) Cell-base meat, the production of animal meat in bioreactors, without the need for killing of animals. This will also broaden the choices of widely-available meats from a few bulk types, such as beef, pork and chicken, to thousands of choices.

5) Micro-organism farming, as with the “Solar Foods” company’s use of micro-organisms to produce limitless quantities of protein, fats and carbohydrates in bioreactors.

Mars helicopter flight test promises Wright Brothers moment for NASA

NASA hopes to score a 21st-century Wright Brothers moment on Monday as it attempts to send a miniature helicopter buzzing over the surface of Mars in what would be the first powered, controlled flight of an aircraft on another planet.

Landmark achievements in science and technology can seem humble by conventional measurements. The Wright Brothers’ first controlled flight in the world of a motor-driven airplane, near Kitty Hawk, North Carolina, in 1903 covered just 120 feet (37 meters) in 12 seconds.

A modest debut is likewise in store for NASA’s twin-rotor, solar-powered helicopter Ingenuity.

7 Innovative Projects Making Cities More Sustainable

Sorry, we’re having trouble playing this video.


With an ever-increasing global population and rising urbanization, creating safe, resilient and sustainable cities is right at the top of the green agenda.

The United Nations included this mission among its 17 Sustainable Development Goals, which together form a blueprint for collectively addressing the challenges the world faces.

Uber launches electric option in London at no extra cost

Uber customers will now be able to request an electric vehicle for the first time as the ride-hailing app looks to become fully electric by 2025.

Launching today Uber Green will give passengers in Zone 1 the opportunity to request an electric vehicle at no extra cost.

The journey will cost the same as a regular UberX journey on the app and drivers will receive a higher fare per trip.

/* */