Polaron formation in perovskite solar cells has been indicated in scientific research as a possible factor for making this kind of cell particularly efficient, although the mechanism behind polarons’ action is completely unknown. A U.S. research group has now observed how polaron distortions form and grow.
Category: sustainability – Page 428
A team working with Roland Fischer, Professor of Inorganic and Metal-Organic Chemistry at the Technical University Munich (TUM) has developed a highly efficient supercapacitor. The basis of the energy storage device is a novel, powerful and also sustainable graphene hybrid material that has comparable performance data to currently utilized batteries.
Usually, energy storage is associated with batteries and accumulators that provide energy for electronic devices. However, in laptops, cameras, cellphones or vehicles, so-called supercapacitors are increasingly installed these days.
Unlike batteries they can quickly store large amounts of energy and put it out just as fast. If, for instance, a train brakes when entering the station, supercapacitors are storing the energy and provide it again when the train needs a lot of energy very quickly while starting up.
Li-Cycle, Northvolt, and Ganfeng Lithium are among those building recycling plants, spurred by environmental and supply-chain concerns.
An Edinburgh company that generates electricity from gravity — is getting noticed by investors, as an effective alternative to large batteries, so that renewable energy supply can be stored until there is demand. No need to go to the Congolese jungle to get hold of the raw materials for batteries.
The Chinese behemoth that makes electric-car batteries for Tesla Inc. and Volkswagen AG developed a power pack that lasts more than a million miles — an industry landmark and a potential boon for automakers trying to sway drivers to their EV models.
Circa 2015
If you’ve ever scanned the comments section on an electric car or bike article, you’ll be familiar with this complaint: “that’s not green, it’s just a coal-powered vehicle.” Well, not this one. The Immortus is an electric car built to generate its own power through some 7 sq m (75 sq ft) of solar photovoltaic paneling. You can charge its battery off the mains if you have to, but if conditions are sunny, the inbuilt solar panels alone will let you drive at more than 60 km/h (37 mph) for an unlimited distance.
The Immortus is based on solar race car technology with the project originally founded by Australia’s Aurora Solar Car Team, which has competed in a bunch of solar race events across the world. Hence the light weight and the shape of the Immortus, which combines maximal sun exposure with extreme aerodynamics, including covered wheels.
Unlike the solar racers, though, it’s designed to approach practicality on the road, with a 0–100 km/h (62 mph) time that will be less than seven seconds and a top speed over 150 km/h (93 mph). It’s also a two-seater with a modest luggage capacity for daily driving. Melbourne-based EVX Ventures, creators of the Immortus, even list fun as a priority, saying it should handle like a well-balanced sports car.
OSLO (Reuters) — The sale of electric cars in Norway overtook those powered by petrol, diesel and hybrid engines last year, with German auto-maker Volkswagen replacing Tesla as the top battery-vehicle producer, new data showed on Tuesday.
The enormous impact of the recent COVID-19 pandemic, together with other diseases or chronic health risks, has significantly prompted the development and application of bioelectronics and medical devices for real-time monitoring and diagnosing health status. Among all these devices, smart contact lenses attract extensive interests due to their capability of directly monitoring physiological and ambient information. Smart contact lenses equipped with high sensitivity sensors would open the possibility of a non-invasive method to continuously detect biomarkers in tears. They could also be equipped with application-specific integrated circuit chips to further enrich their functionality to obtain, process and transmit physiological properties, manage illnesses and health risks, and finally promote health and wellbeing. Despite significant efforts, previous demonstrations still need multistep integration processes with limited detection sensitivity and mechanical biocompatibility.
Recently, researchers from the University of Surrey, National Physical Laboratory (NPL), Harvard University, University of Science and Technology of China, Zhejiang University Ningbo Research Institute, etc. have developed a multifunctional ultrathin contact lens sensor system. The sensor systems contain a photodetector for receiving optical information, imaging and vision assistance, a temperature sensor for diagnosing potential corneal disease, and a glucose sensor for monitoring glucose level directly from the tear fluid.
Dr. Yunlong Zhao, Lecturer in Energy Storage and Bioelectronics at the Advanced Technology Institute (ATI), University of Surrey and Senior Research Scientist at the UK National Physical Laboratory (NPL), who led this research stated, “These results provide not only a novel and easy-to-make method for manufacturing advanced smart contact lenses but also a novel insight of designing other multifunctional electronics for Internet of Things, human machine interface, etc.” Dr. Zhao added, “our ultrathin transistors-based serpentine mesh sensor system and fabrication strategy allow for further incorporation of other functional components, such as electrode array for electrophysiology, antennas for wireless communication, and the power modules, e.g. thin-film batteries and enzymatic biofuel cell for future in vivo exploration and practical application. Our research team at ATI, University of Surrey and NPL are currently working on these fields.”
“For example, a number of animals benefit from solar-powered molecules. The pea aphid produces pigments that, with the aid of light, generate adenosine triphosphate, or ATP, the compound that powers reactions with cells. In addition, a stripe of yellow pigment on the exoskeleton of the Oriental hornet (Vespa orientalis) converts light to electricity, which could help to explain why these insects become more active during the middle of the day. Other animals make use of actual photosynthesis, using sunlight, water and carbon dioxide to produce sugars and other vital compounds. Plants and algae rely on chloroplasts, structures within their cells, to carry out photosynthesis, but Elysia sea slugs can steal chloroplasts from algae they graze on, to help them live solely on photosynthesis for months… Many other animals reap benefits from photosynthesis by forming partnerships instead. For instance, most corals partner with photosynthetic symbiotic microbes known as zooxanthellae, while the eggs of spotted salamanders receive valuable oxygen from algae.”
If humans had green skin, for instance, what if it granted us the ability to perform photosynthesis, which plants use to live off of sunlight?