Menu

Blog

Archive for the ‘sustainability’ category: Page 4

Dec 6, 2024

Prof. Carlos Duarte, Ph.D. — Executive Director, Coral Research & Development Accelerator Platform

Posted by in categories: bioengineering, biological, climatology, sustainability

Professor Carlos Duarte, Ph.D. is Distinguished Professor, Marine Science, and Executive Director, Coral Research \& Development Accelerator Platform (CORDAP — https://cordap.org/), Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST — https://www.kaust.edu.sa/en/study/fac…), in Saudi Arabia, as well as Chief Scientist of Oceans2050, OceanUS, and E1Series.

Prior to these roles Professor Duarte was Research Professor with the Spanish National Research Council (CSIC) and Director of the Oceans Institute at The University of Western Australia. He also holds honorary positions at the Arctic Research Center in Aarhus University, Denmark and the Oceans Institute at The University of Western Australia.

Continue reading “Prof. Carlos Duarte, Ph.D. — Executive Director, Coral Research & Development Accelerator Platform” »

Dec 6, 2024

Experiments provide evidence that interaction of light with a hydrocarbon molecule produces strained molecular rings

Posted by in categories: chemistry, solar power, sustainability

When molecules interact with ultraviolet (UV) light, they can change shape quickly, producing strain—stress in a molecule’s chemical structure due to an increase in the molecule’s internal energy. These processes typically take just tens of picoseconds (one millionth of a millionth of a second). Advanced capabilities at X-ray free electron laser (XFEL) facilities now enable scientists to create images of these ultrafast structural changes.

In work appearing in The Journal of Physical Chemistry A, researchers found structural evidence of a strained bicyclic molecule (a molecule consisting of two joined rings) that emerges from the chemical reaction that occurs when a cyclopentadiene molecule absorbs UV light. Cyclopentadiene is a good sample chemical for studying a range of reactions, and these findings have broad implications for chemistry.

Highly strained molecules have a variety of interesting applications in solar energy and pharmaceuticals. However, strain doesn’t typically occur naturally—energy must be added to a molecular system to create the strain. Identifying processes that produce molecules with strained rings is a challenge of broad interest in physical chemistry.

Dec 6, 2024

A rising danger in the Arctic

Posted by in categories: biological, climatology, sustainability

As climate change melts permafrost, microbes will emerge. The world isn’t paying enough attention to the potential threat they pose.

Dec 6, 2024

Want to design the car of the future? Here are 8,000 designs to get you started

Posted by in categories: robotics/AI, sustainability, transportation

MIT engineers have released DrivAerNet++, an open-source dataset of over 8,000 car designs, to accelerate automotive innovation using AI. This dataset, featuring detailed aerodynamic data, aims to enhance fuel efficiency and electric vehicle range, promoting sustainable car design advancements.


Car design is an iterative and proprietary process. Carmakers can spend several years on the design phase for a car, tweaking 3D forms in simulations before building out the most promising designs for physical testing. The details and specs of these tests, including the aerodynamics of a given car design, are typically not made public. Significant advances in performance, such as in fuel efficiency or electric vehicle range, can therefore be slow and siloed from company to company.

Continue reading “Want to design the car of the future? Here are 8,000 designs to get you started” »

Dec 4, 2024

Frontiers: A base on the Moon surface or a mission to Mars are potential destinations for human spaceflight, according to current space agencies’ plans

Posted by in categories: biological, chemistry, food, robotics/AI, space, sustainability

These scenarios pose several new challenges, since the environmental and operational conditions of the mission will strongly differ than those on the International Space Station (ISS). One critical parameter will be the increased mission duration and further distance from Earth, requiring a Life Support System (LSS) as independent as possible from Earth’s resources. Current LSS physico-chemical technologies at the ISS can recycle 90% of water and regain 42% of O2 from the astronaut’s exhaled CO2, but they are not able to produce food, which can currently only be achieved using biology. A future LSS will most likely include some of these technologies currently in use, but will also need to include biological components. A potential biological candidate are microalgae, which compared to higher plants, offer a higher harvest index, higher biomass productivity and require less water. Several algal species have already been investigated for space applications in the last decades, being Chlorella vulgaris a promising and widely researched species. C. vulgaris is a spherical single cell organism, with a mean diameter of 6 µm. It can grow in a wide range of pH and temperature levels and CO2 concentrations and it shows a high resistance to cross contamination and to mechanical shear stress, making it an ideal organism for long-term LSS. In order to continuously and efficiently produce the oxygen and food required for the LSS, the microalgae need to grow in a well-controlled and stable environment. Therefore, besides the biological aspects, the design of the cultivation system, the Photobioreactor (PBR), is also crucial. Even if research both on C. vulgaris and in general about PBRs has been carried out for decades, several challenges both in the biological and technological aspects need to be solved, before a PBR can be used as part of the LSS in a Moon base. Those include: radiation effects on algae, operation under partial gravity, selection of the required hardware for cultivation and food processing, system automation and long-term performance and stability.

The International Space Station (ISS) has been continuously inhabited for over twenty years. The Life Support System (LSS) on board the station is in charge of providing the astronauts with oxygen, water and food. For that, Physico-Chemical (PC) technologies are used, recycling 90% of the water and recovering 42% of the oxygen (O2) from the carbon dioxide (CO2) that astronauts produce (Crusan and Gatens, 2017), while food is supplied from Earth.

Space agencies currently plan missions beyond Low Earth Orbit, with a Moon base or a mission to Mars as potential future scenarios (ESA Blog 2016; ISEGC 2018; NASA 2020). The higher distance from Earth of a lunar base, compared to the ISS, might require the production of food in-situ, to reduce the amount of resources required from Earth. PC technologies are not able to produce food, which can only be achieved using biological organisms. Several candidates are currently being investigated, with a main focus on higher plants (Kittang et al., 2014; Hamilton et al., 2020) and microalgae (Detrell et al., 2020b; Poughon et al., 2020).

Dec 4, 2024

China turns waste oil into supercapacitors with 86.5% efficiency

Posted by in categories: energy, sustainability

Scientists in China have claimed a breakthrough that might completely change how we store energy by turning waste oil into a formidable substance for energy storage.

As the world grapples with increasing power demand, supercapacitors are becoming more popular because of their quick charging and discharging times, which makes them perfect for high-performance applications.

The researcher’s novel method provides a sustainable way to make these supercapacitors while addressing waste management and energy storage challenges, according to a press release by the Chinese Academy of Sciences (CAS).

Dec 4, 2024

US-China crack code for toxic-free solar panels with 20% efficiency

Posted by in categories: chemistry, solar power, sustainability

A new design principle has been identified that could eliminate the use of toxic chemicals in solar cell manufacturing.

The standard manufacturing process of organic cells involves toxic solvents. This environmental concern has hindered the widespread adoption of organic solar cells.

Continue reading “US-China crack code for toxic-free solar panels with 20% efficiency” »

Dec 4, 2024

Closing the AI equity gap by focusing on trust and safety

Posted by in categories: robotics/AI, sustainability

AI is becoming an increasingly powerful technology that can benefit humanity and sustainable development, but empowering local AI ecosystems across all countries needs to be prioritized to build the tools and coalitions necessary to ensure robust safety measures. Here, we make a case for reimagining trust and safety, a critical building block for closing the AI equity gap.

“Trust and safety” is not a term that developing countries are always familiar with, yet people are often impacted by it in their everyday interactions. Traditionally, trust and safety refers to the rules and policies that private sector companies put in place to manage and mitigate risks that affect the use of their digital products and services, as well as the operational enforcement systems that determine reactive or proactive restrictions. The decisions that inform these trust and safety practices carry implications for what users can access online, as well as what they can say or do.

Dec 3, 2024

Bird dispersal ability shapes biodiversity patterns on islands worldwide, new study finds

Posted by in category: sustainability

You can know a lot of things about birds just by the shape of their wings. A seafaring albatross, stretching out its sail-like airfoils, lives a very different life from a ground-dwelling antpitta with its long legs and short, stubby wings that it uses in rare, short bursts of flight.

But can bird wing shape tell scientists something useful about how nature is organized?

Research from Washington University in St. Louis says that bird wing shape—a proxy for long-distance flying ability—is a trait that influences biodiversity patterns on around the world.

Dec 3, 2024

Tesla Holiday Software Update Adds Apple Watch, SiriusXM Apps, Usual Silliness

Posted by in categories: climatology, sustainability

Tesla’s annual holiday software update for its vehicles will begin rolling out next week with an official Apple Watch app, SiriusXM support, and more than a dozen other features.

The Apple Watch app is one of the highlights and will let owners perform some basic functions offline while in Bluetooth range, like locking and unlocking their car, adjusting the climate, and popping open the front trunk. Tesla’s iOS app leaked the Apple Watch news back in October, so while it is a welcome addition, it may be less of a surprise than some of the other features.

Page 4 of 64312345678Last