Toggle light / dark theme

Rift Valley fever used to mostly affect livestock in Africa. But the virus that causes it is also spread by mosquitoes whose habitats are expanding because of climate change. If it were to make its way to the rest of the world, it would decimate livestock causing agricultural collapse as well as affecting human health.

In 2015 the Zika virus triggered a global health crisis that left thousands of parents devastated. The virus can cause serious problems in pregnancy, leading to babies with birth defects called microcephaly and other neurological problems. But Zika is not the only virus that can be devastating to pregnant women and their babies; there is another with pandemic potential that could be even more deadly – Rift Valley fever.

The placenta that encases the baby acts as a fortress against many pathogens, but a few can evade its defences. Rift Valley fever is one of them – a 2019 study shows that the virus has the ability to infect a specialised layer of placental cells that carry nutrients to the baby, something that even Zika may not be capable of. In cattle and other livestock, in which the virus spreads, infection can cause more than 90% of pregnant cows to miscarry or deliver stillborn calves. Although the virus kills fewer than 1% of people it infects, it is the risk to babies, and the lasting neurological effects in adults, that is of great concern.

LONDON — An illegal bitcoin mine has been found by police in the U.K. who were looking for a cannabis farm.

The mine — located in an industrial unit on the outskirts of the English city of Birmingham — was stealing thousands of pounds worth of electricity from the mains supply, West Midlands Police said Thursday.

Police searched the unit in Sandwell on May 18 on the back of intelligence that led them to believe it was being used as a cannabis farm.

Bye Aerospace’s eFlyer 800 is a clean-sheet design that will carry eight people, including one or two pilots. The 800 will have two motors, powered by a grid of electric cells across the airframe.

This is the third model in a lineup of electric planes from the Denver-based aerospace firm, but the first with two motors. The eFlyer 2 is a two-seater for professional flight training that was developed when the company launched in 2014, and the eFlyer 4, a four-seater for air taxi and advanced training, came later. Both models have more than 360 orders each.

Amazing: 3


The President of Estonia Kersti Kaljulaid at the Tartu University laboratory. Photo: Mattias Tammet / Office of the President of the Republic of Estonia.

As the world is running out of lithium, planet-friendlier batteries are waiting to hit the market. We are using up lithium, the essential metal in rechargeable batteries. Some experts estimate that there won’t be any lithium left by 2035, and some say that it may already disappear within four years. Who should lose sleep over this? Anyone with a smartphone, a laptop or an electric car. Without lithium, they would have to be plugged in at all times.

But it’s not just about comfort. Lithium also plays an important role in storing wind and solar energy, an increasingly important sector. Therefore, the world is in the midst of a battery revolution.

Researchers have also long been chasing lithium-air batteries that could realize a huge jump in energy density. And beyond lithium, there are other entirely different chemistries in development out there. At some point, one of them should click for one application or another.

Lithium-ion or not, an explosion of grid-scale battery installations is coming as prices continue to fall. The nascent art of lithium-ion battery recycling is also sure to mature and expand, improving the sustainability of these batteries by recovering and resetting their chemical building blocks.

Adopt cold-fusion-like skepticism of any of these future-looking statements as you please, but today’s batteries aren’t those of 20 or even 10 years ago. The same thing is bound to be true in another 10 years—even if that progress doesn’t come in a single, giant leap with global fanfare.

The price of bitcoin jumped about 4% Monday afternoon after Tesla CEO Elon Musk tweeted that he was having active discussions regarding the sustainability of the digital coin.

Bitcoin was trading around $38074, according to Coindesk, when at about 3:42 p.m. ET Musk posted on Twitter: “Spoke with North American Bitcoin miners. They committed to publish current & planned renewable usage & to ask miners WW to do so. Potentially promising.”

Within minutes, the price had shot up to more than $39500. Overall, the coin is up more than 17% in the last 24 hours.

As the need for urgent climate solutions grows, scientists want to put more research into a technology known as solar geoengineering — the idea of chemically altering the atmosphere to reflect sunlight away from Earth.

It is seen as a potential method of cooling the planet and offsetting climate change. But could such a technology curtail a climate catastrophe — or become the cause of it?

Those against solar geoengineering fear unintended consequences, including irreversible changes to weather patterns, and many climate activists are wary of using the Earth’s atmosphere as a testing ground. Last month in Sweden, an experiment led by Harvard University researchers was cancelled following opposition by environmental and indigenous groups. Researchers had planned on testing a high-altitude balloon that could be used to disperse reflective aerosol particles into the atmosphere.

In this episode of The Stream, we’ll learn more about solar geoengineering and the debate surrounding it.

University at Buffalo (UB) researchers have developed a novel 3D printed water-purifying graphene aerogel that could be scaled for use at large wastewater treatment plants.

Composed of a styrofoam-like aerogel, latticed graphene and two bio-inspired polymers, the novel material is capable of removing dyes, metals and organic solvents from drinking water with 100% efficiency. Unlike similar nanosheets, the scientists’ design is reusable, doesn’t leave residue and can be 3D printed into larger sizes, thus they now aim to commercialize it for industrial-scale deployment.

“The goal is to safely remove contaminants from water without releasing any problematic chemical residue,” explained study co-author and assistant professor of environmental engineering at UB, Nirupam Aich. “The aerogels we’ve created hold their structure when put into water treatment systems, and they can be applied in diverse water treatment applications.”

When one of the largest modern earthquakes struck Japan on March 11, 2011, the nuclear reactors at Fukushima-Daiichi automatically shut down, as designed. The emergency systems, which would have helped maintain the necessary cooling of the core, were destroyed by the subsequent tsunami. Because the reactor could no longer cool itself, the core overheated, resulting in a severe nuclear meltdown, the likes of which haven’t been seen since the Chernobyl disaster in 1986.

Since then, reactors have improved exponentially in terms of safety, sustainability and efficiency. Unlike the light-water reactors at Fukushima, which had liquid coolant and , the current generation of reactors has a variety of coolant options, including molten-salt mixtures, supercritical water and even gases like helium.

Dr. Jean Ragusa and Dr. Mauricio Eduardo Tano Retamales from the Department of Nuclear Engineering at Texas A&M University have been studying a new fourth-generation , -bed reactors. Pebble-bed reactors use spherical fuel elements (known as pebbles) and a fluid coolant (usually a gas).