Toggle light / dark theme

Europe Is Getting Serious About Making Space-Based Solar Power a Reality

Proposals for beaming solar power down from space have been around since the 1970s, but the idea has long been seen as little more than science fiction. Now, though, Europe seems to be getting serious about making it a reality.

Space-based solar power (SBSP) involves building massive arrays of solar panels in orbit to collect sunlight and then beaming the collected energy back down to Earth via microwaves or high-powered lasers. The approach has several advantages over terrestrial solar power, including the absence of night and inclement weather and the lack of an atmosphere to attenuate the light from the sun.

But the engineering challenge involved in building such large structures in space, and the complexities of the technologies involved, have meant the idea has remained on the drawing board so far. The director general of the European Space Agency, Josef Aschbacher, wants to change that.

Wave-riding generators promise the cheapest clean energy ever

Sea Wave Energy Ltd (SWEL) has been working for more than a decade on a floating wave energy device it calls the Waveline Magnet. With several prototypes tested on-and off-shore, the company claims it delivers “ultra low cost,” with high output.

Solar electricity generation is proliferating globally and becoming a key pillar of the decarbonization era. Lunar energy is taking a lot longer; tidal and wave energy is tantalizingly easy to see; step into the surf in high wave conditions and it’s obvious there’s an enormous amount of power in the ocean, just waiting to be tapped. But it’s also an incredibly harsh and punishing environment, and we’re yet to see tidal or wave energy harnessed on a mass scale.

That doesn’t mean people aren’t trying – we’ve seen many tidal energy ideas and projects over the years, and just as many dedicated to pulling in wave energy for use on land. There are a lot of prototypes and small-scale commercial installations either running or under construction, and the sector remains optimistic that it’ll make a significant clean energy contribution in years to come.

Structure of the plastic-degrading Ideonella sakaiensis MHETase bound to a substrate

Basically this special bacterium Ideonella sakaiensis could solve the plastic crisis in the oceans by eating the plastic.


Plastic polymer PET degrading enzymes are of great interest for achieving sustainable plastics recycling. Here, the authors present the crystal structures of the plastic degrading bacterial enzymes PETase, MHETase in its apo-form and MHETase bound to a non-hydrolyzable substrate analog.

Tesla shares new photos of the Tesla Semi. Delivery soon?👀

Tesla shared some new photos of the Tesla Semi on its website recently. Deliveries of Tesla’s all-electric Class 8 truck are expected to start sometime this year. It is also expected to be made with Tesla’s 4,680 cells. Earlier this month, Elon Musk said that Tesla’s 500-mile range Semi Truck will start shipping this year. He added that the Cybertruck would start shipping next year.

Today on Twitter, members of the Tesla community found new photos of the Semi that Tesla quietly uploaded to its website. @Tesla_Adri pointed out that Tesla added some new Tesla Semi press photos and that almost every image is new.

Tesla reworked the Tesla Semi Press Photos. Pretty much every image is new pic.twitter.com/ab67GH65j1

With new solar modules, greenhouses run on their own energy

Plants use light waves from only a portion of the spectrum for photosynthesis—the remainder can be recovered and used to generate solar power. That’s the idea behind the solar modules developed by EPFL startup Voltiris. Following encouraging preliminary results, a new pilot installation was recently installed in Graubünden.

In Switzerland, growing tomatoes, cucumbers, peppers and other light-and heat-intensive vegetables requires building a greenhouse—but operating one consumes a huge amount of power. Farmers have to carefully balance crop yields and economics with . “It costs more than CHF 1.5 million a year to heat a 5-hectare greenhouse,” says Nicolas Weber, the CEO of Voltiris. “And a greenhouse of that size emits roughly the same amount of CO2 per year as 2,000 people.”

The Swiss federation of fruit & vegetable growers, which cultivate several thousand hectares across the country, has set a target of eliminating all fossil-fuel-based energy from its farming processes by 2040. The system developed by Voltiris can go a long way towards reaching that goal. Its technology is based on the fact that don’t use all of the waves contained in sunlight; the remaining ones can be concentrated onto photovoltaic (PV) cells to generate . Voltiris’ system is lightweight and designed to track the sun’s movement across the sky, and boasts daily yields on par with conventional solar panels. The first vegetables grown under Voltiris’ system were harvested this summer through pilot tests carried out at two greenhouses, in the cantons of Valais and Graubünden.

/* */