Menu

Blog

Archive for the ‘sustainability’ category: Page 231

Aug 4, 2022

Ultra-thin silicon nanoparticle solar cell with 11% efficiency

Posted by in categories: nanotechnology, particle physics, solar power, sustainability

“This is because SNPs are assumed to be the main absorber in the cell. Thus, any distance between them reduces the absorption of incident photons,” the group said.

They considered different SNP structures and configurations to tailor these particles as a p–n junction cell. They said this kind of cell could achieve a theoretical efficiency of around 11%.

Aug 4, 2022

This Gates-Backed Startup Builds Modular Homes Out of Energy-Efficient Panels

Posted by in categories: energy, finance, sustainability

Companies specializing in cutting-edge construction techniques are aiming to make a difference by churning out high-quality homes at a lower cost than traditional industry standards. Among these are 3D printed homes, “foldable” homes, and homes that ship in kits then are assembled like Ikea furniture.

Now a new player is joining the list, and it just got a serious financial boost. Vantem Global has already helped construct a total of over three million square feet of living space in six different countries, and earlier this month closed a Series A funding round co-led by Breakthrough Energy Ventures (Breakthrough was founded by Bill Gates in 2015 to invest in sustainable energy and emissions-reduction technologies).

Continue reading “This Gates-Backed Startup Builds Modular Homes Out of Energy-Efficient Panels” »

Aug 4, 2022

Exceeding 100 percent quantum efficiency in the photocurrent of a hybrid inorganic-organic semiconductor

Posted by in categories: particle physics, quantum physics, solar power, sustainability

Tiny crystals, known as quantum dots, have enabled an international team to achieve a quantum efficiency exceeding 100 percent in the photocurrent generated in a hybrid inorganic-organic semiconductor.

Perovskites are exciting semiconductors for light-harvesting applications and have already shown some impressive performances in solar cells. But improvements in photo-conversion efficiency are necessary to take this technology to a broader market.

Light comes in packets of energy known as photons. When a semiconductor absorbs a photon, the is transferred to a negatively charged electron and its positively charged counterpart, known as a hole. An can sweep these particles in , thereby allowing a current to flow. This is the basic operation of a solar cell. It might sound simple, but optimizing the quantum efficiency, or getting as many from the incoming photons as possible, has been a long-standing goal.

Aug 4, 2022

What Are States Planning To Do With Federal EV Charging Funds?

Posted by in categories: economics, energy, law, sustainability, transportation

State plans for the National EV Charging Infrastructure (NEVI) Formula Program were due to the Joint Office of Energy and Transportation this week, and many states released a draft plan for feedback in the last couple of months. The NEVI Program is one of two programs in the Bipartisan Infrastructure Law that provide funding for publicly-accessible electric vehicle (EV) charging infrastructure. Program funds can be used to plan for, install, operate, and maintain EV charging stations along travel corridors, with a focus on designated Alternative Fuel Corridors. Funding under the NEVI program totals $5 billion from 2022 through 2026. Funds will be allocated to states each year for implementation based on a pre-established formula, provided the departments of transportation in those states submit a satisfactory EV charging plan to the Joint Office, with updates to the plan required annually.

So what’s in the draft plans?

I pulled a few draft plans to look at as a starting point, aiming for a cross section of states in different regions, with different politics, with different economic stakes in the EV transition, at different places in EV adoption, with different weather. I couldn’t get quite the representative cross section I wanted because there are still big gaps in which states have released a draft plan. I decided to start with Alabama, California, Texas, and Wyoming.

Aug 3, 2022

Swiss team creates most efficient silicon-based solar cell ever

Posted by in categories: solar power, sustainability

Swiss researchers have done the (theoretically) impossible, creating not one but two silicon-based solar cells with efficiencies greater than 30% — breaking a world record and potentially illuminating the path to a future of cheaper clean energy.

The status quo: Solar cells absorb light and convert it into electricity. They’re the basis of most solar power tech, and about 95% of them are made from silicon because it’s abundant, long-lasting, and relatively cheap.

Most of the silicon solar cells sold today are about 22% efficient, meaning they convert 22% of the solar energy that hits them into electricity. We don’t have too much room for improvement with silicon solar cells, either, as they have a theoretical efficiency limit of about 29%.

Aug 3, 2022

Net zero carbon in the concrete industry will require not just changes in manufacturing standards

Posted by in categories: economics, energy, sustainability, transportation

The concrete industry is just one of many looking at new manufacturing methods to reduce its carbon footprint. These efforts are essential to fulfilling the Paris Agreement, which asks each of its signees to achieve a net-zero carbon economy by 2050. However, a new study from researchers in Japan and Belgium and focusing exclusively on Japan concludes that improved manufacturing technologies will only get the industry within 80% of its goal. Using a dynamic material flows analysis model, the study claim that the other 20% will have to come from changes in how concrete is consumed and managed, putting expectations on the buyer as well as the seller.

Electric cars, fluorescent lights, water-saving shower heads, these are all examples of efforts to lower our . However, the are made from the supply side, with companies developing new technologies that reduce the amount of energy consumed for the same amount of use. Notably, they put little demand on the user, who can use the product no differently than before.

The same holds true for concrete, the most consumed human-made material in the world. Many studies have shown the potential for making the concrete industry more energy efficient through esoteric efforts like “clinker-to-cement ratio reduction,” “cement substitution with alternative binders,” and “ capture and utilization.” The problem, explains Dr. Takuma Watari, a researcher at the Japan National Institute for Environmental Studies and lead of the new study, is that supply-side efforts are not enough if nations are serious about achieving net-zero carbon emissions.

Aug 3, 2022

Startup Makes EVs Truly Sustainable, Recycles 1000 Tonnes of Li-ion Batteries/Year

Posted by in categories: sustainability, transportation

T he introduction of lithium-ion (Li-ion) batteries has revolutionised transport technology. We wouldn’t be witnessing the current electric vehicle (EV) revolution without them. However, with the production of these batteries, which contain lithium and cobalt, comes associated with environmental and social costs. In the Democratic Republic of Congo, which accounts for 60% of the world’s supply of cobalt, a large number of unregulated mines use children as miners.

Children as young as 7 “breathe in cobalt-laden dust that can cause fatal lung ailments while working tunnels that are liable to collapse,” notes this report in The Guardian. Meanwhile, lithium mining has resulted in significant loss of groundwater in South America, while toxic leaks resulting from the process have poisoned water bodies in Tibet.

To lessen the burden on the environment, while meeting the growing demand for EVs, one possible solution could be recycling these Li-ion batteries.

Aug 3, 2022

Prototype battery only needs seconds of sunlight to keep smart wearables charged

Posted by in categories: health, internet, solar power, sustainability, wearables

Thirty seconds of sunlight could boost the battery life of future smartwatches and other wearables by tens of minutes, thanks to a renewable and rechargeable battery prototype developed by the University of Surrey.

Surrey’s Advanced Technology Institute (ATI) has demonstrated how its new photo-rechargeable system, which merges zinc-ion batteries with , could allow wearables to spring back to life without the need to plug in.

Jinxin Bi, a Ph.D. candidate at ATI and the first author of the paper, says that “this technology provides a promising strategy for efficient use of clean energy and enables wearable electronics to be operated continuously without plug-in charging. Our prototype could represent a step forward to how we interact with wearables and other internet-of-things devices, such as remote real-time health monitors.”

Aug 3, 2022

World’s first wind turbine with recyclable blades is up and spinning

Posted by in categories: economics, sustainability

Separating the resin, fiberglass, and wood, among others, is achieved through using a mild acid solution. The materials can then go into the circular economy, creating new products like suitcases or flat-screen casings without the need to call on more raw resources.

The RecyclableBlade technology was developed in Aalborg, Denmark, and the blades were manufactured in Hull in the UK (pictured above). The nacelles were produced and installed in Cuxhaven, Germany. Siemens Gamesa has a plan to make all of its wind turbine blades fully recyclable by 2030 and all of its wind turbines fully recyclable by 2040.

Aug 3, 2022

Researchers propose affordable and sustainable alternative to lithium-ion batteries

Posted by in categories: chemistry, energy, sustainability

Concerns regarding scarcity, high prices, and safety regarding the long-term use of lithium-ion batteries has prompted a team of researchers from Rensselaer Polytechnic Institute to propose a greener, more efficient, and less expensive energy storage alternative.

In research published recently in Proceedings of the National Academy of Science (PNAS), corresponding author Nikhil Koratkar, the John A. Clark and Edward T. Crossan Professor of Engineering at Rensselaer, and his team, assert that could be used as an alternative to lithium-ions in batteries because of its abundance and low cost.

“The vast majority of rechargeable battery products are based on lithium-ion technology, which is the gold standard in terms of performance,” said Dr. Koratkar. “However, the Achilles’ heel for lithium-ion technology is cost. Lithium is a limited resource on the planet, and its price has increased drastically in recent years. We are working on an inexpensive, abundant, safe, and sustainable battery chemistry that uses ions in an aqueous, water-based electrolyte.”