Toggle light / dark theme

Both animals and people use high-dimensional inputs (like eyesight) to accomplish various shifting survival-related objectives. A crucial aspect of this is learning via mistakes. A brute-force approach to trial and error by performing every action for every potential goal is intractable even in the smallest contexts. Memory-based methods for compositional thinking are motivated by the difficulty of this search. These processes include, for instance, the ability to: recall pertinent portions of prior experience; (ii) reassemble them into new counterfactual plans, and (iii) carry out such plans as part of a focused search strategy. Compared to equally sampling every action, such techniques for recycling prior successful behavior can considerably speed up trial-and-error. This is because the intrinsic compositional structure of real-world objectives and the similarity of the physical laws that control real-world settings allow the same behavior (i.e., sequence of actions) to remain valid for many purposes and situations. What guiding principles enable memory processes to retain and reassemble experience fragments? This debate is strongly connected to the idea of dynamic programming (DP), which using the principle of optimality significantly lowers the computing cost of trial-and-error. This idea may be expressed informally as considering new, complicated issues as a recomposition of previously solved, smaller subproblems.

This viewpoint has recently been used to create hierarchical reinforcement learning (RL) algorithms for goal-achieving tasks. These techniques develop edges between states in a planning graph using a distance regression model, compute the shortest pathways across it using DP-based graph search, and then use a learning-based local policy to follow the shortest paths. Their essay advances this field of study. The following is a summary of their contributions: They provide a strategy for long-term planning that acts directly on high-dimensional sensory data that an agent may see on its own (e.g., images from an onboard camera). Their solution blends traditional sampling-based planning algorithms with learning-based perceptual representations to recover and reassemble previously recorded state transitions in a replay buffer.

The two-step method makes this possible. To determine how many timesteps it takes for an optimum policy to move from one state to the next, they first learn a latent space where the distance between two states is the measure. They know contrastive representations using goal-conditioned Q-values acquired through offline hindsight relabeling. To establish neighborhood criteria across states, the second threshold this developed latent distance metric. They go on to design sampling-based planning algorithms that scan the replay buffer for trajectory segments—previously recorded successions of transitions—whose ends are adjacent states.

Researchers from the University of Toronto’s Faculty of Applied Science & Engineering and Fujitsu have developed a new way of searching through ‘chemical space’ for materials with desirable properties.

The technique has resulted in a promising new catalyst material that could help lower the cost of producing clean hydrogen.

The discovery represents an important step toward more sustainable ways of storing energy, including from renewable but intermittent sources, such as solar and wind power.

The team has successfully tested a sustainable membrane-based seawater electrolyzer.

A research team in China has developed a device to split salty seawater to produce hydrogen directly. The device, a membrane-based seawater electrolyzer, helps address the side-reaction and corrosion problems of traditional methods.

Why traditional methods are not sustainable.


Petmal/iStock.

Making the total amount of sold Tesla stocks nearly $40 billion over the past year.

Tesla CEO, Elon Musk, has been on a selling spree of his company’s stock this year. Earlier this week, Musk sold 22 million shares over a period of three days, a filing with the U.S. financial regulator has revealed, the BBC

Musk, who rose to the top of the world’s wealthiest people list last year riding on Tesla stock price, has spent most of 2022 dealing with this start-again-stop-again campaign to acquire Twitter. Musk, who was quite secretive about acquiring Twitter stock at the beginning of the year, shocked many by declaring his intent to buy out the social media company and take it private.

Next-generation batteries could take on many forms, but one design that scientists are pinning a lot of hope on involves the use of lithium metal. The excellent energy density of this material could see batteries power smartphones for days at a time, and by designing a new electrolyte that can be controlled by an external magnetic fields, scientist in South Korea have edged them a little closer to reality.

A lithium-metal battery is one that would see this material deployed in place of the graphite and copper used in the anode of today’s lithium-ion batteries. This could make for smaller and lighter anodes with far superior energy density, which could see smartphones require far fewer charges each week or an electric vehicle travel much farther on each charge.

But one problem researchers continue to run into is the growth of tentacle-like protrusions on the anode called dendrites, which swiftly cause the battery to fail. There is no shortage of potential solutions when it comes to addressing this issue, and now a team at the Daegu Gyeongbuk Institute of Science and Technology have thrown another bright idea into the mix.

Colombian renewable energy startup E-Dina developed a wireless lantern, called WaterLight, that converts salt water into electricity and is more reliable than solar-powered lamps, a Dezeen article explains. And it can also be charged by urine in emergency situations.

The portable device acts as a mini generator that produces light using ionization — by filling it with 500 milliliters of seawater, the salt in the water reacts with magnesium and copper plates inside the device, converting it into electrical energy.

Standing among solar arrays and power grid equipment at the National Renewable Energy Laboratory (NREL), you might hear a faint, distorted melody buzzing from somewhere. You are not hallucinating—that gray box really is singing the Star Wars Theme, or the ice cream truck song, or Chopin’s Waltz in A minor. Power system engineers are just having some fun with an NREL capability that prevents stability problems on the electrical grid.

Usually, the engineers send another kind of waveform through the inverters and load banks: megawatts of power and voltage vibrations at many frequencies. The purpose of their research is to see how and the grid interact—to get them “in tune” and prevent dangerous electrical oscillations that show up like screechy feedback or a booming sub-bass.

The engineers can do this analysis at with NREL hardware using the lab’s advanced impedance measurement system, and they have also produced a commercially available software called the Grid Impedance Scan Tool or GIST that can do the same with simulated power on device models, allowing any manufacturer or grid operator to certify grid with renewable energy resources.

Musk’s attention to Twitter is hurting his bread and butter.

Since September last year, Elon Musk has been regarded as the world’s richest person. The stock price of the electric vehicle-making company Tesla has been the sole reason behind his dramatic rise to the top. With Tesla stock dropping 50 percent value since the beginning of the year, Musk has now dropped to number two on the list of the world’s richest people, Bloomberg.


Getty Images.

In April, Musk announced his decision to buy out Twitter and take the social media company private to unlock its true potential. The timing of his offer could not be worse as the U.S. Federal Bank began tightening its fiscal policy to rein in inflation. Within days, Musk’s $44 billion offer seemed a price too high to pay, as the stock prices of tech companies began shrinking with higher interest rates.

Global payments giant Visa says it will invest $1 billion by 2027 to expand its investments in Africa amidst a digital payments boom on the continent.

Visa chief Al Kelly announced this pledge on Wednesday during the U.S.-Africa Business Forum, a sub-event in the broader U.S.-Africa Leaders Summit, a three-day event where U.S. President Joe Biden invited heads of state and senior government officials from Africa to discuss several issues ranging from food security to climate change.

“Visa has been investing in Africa for several decades to grow a truly local business, and today our commitment to the continent remains as firm and unwavering as ever,” said the Visa CEO in a statement.