Toggle light / dark theme

A breakthrough from JMU Würzburg researchers has brought science one step closer by creating a stacked dye system that efficiently moves charge carriers using light—just like in plant cells.

Harnessing Sunlight: The Magic of Photosynthesis

Photosynthesis is the process plants use to convert sunlight, carbon dioxide, and water into energy-rich sugars and oxygen. This remarkable system fuels plant growth and releases the oxygen we breathe.

Could this VR experience change how you see the planet?


For many, constant bad news numbs our reaction to climate disasters. But research suggests that a new type of immersive storytelling about nature told through virtual reality (VR) can both build empathy and inspire us to act.

I’m crying into a VR headset. I’ve just watched a VR experience that tells the story of a young pangolin called Chestnut, as she struggles to survive in the Kalahari Desert. A vast, dusty landscape extends around me in all directions, and her armoured body seems vulnerable as she curls up, alone, to sleep. Her story is based on the life of a real pangolin that was tracked by scientists.

Chestnut hasn’t found enough to ants to eat, since insect numbers have dwindled due to climate change. Her sunny voice remains optimistic even as exhaustion takes over. In the final scenes, she dies, and I must clumsily lift my headset to dab my eyes.

Battery waste has become an increasing problem in recent years due to the massive demand for consumer electronics like smartphones and laptops, as well as the electrification of the automotive industry.

A recent report from Stanford University in the US, published in the journal Nature Communications, found that recycling lithium-ion batteries is far more environmentally friendly than mining for new materials.

The Nano Materials Research Division at the Korea Institute of Materials Science (KIMS), led by Dr. Tae-Hoon Kim and Dr. Jung-Goo Lee has successfully developed a grain boundary diffusion process that enables the fabrication of high-performance permanent magnets without the use of expensive heavy rare earth elements. This pioneering technology marks the world’s first achievement in this field.

The findings are published in Acta Materialia.

Permanent magnets are key components in various high-value-added products, including electric vehicle (EV) motors and robots. However, conventional permanent magnet manufacturing processes have been heavily dependent on heavy rare earth elements, which are exclusively produced by China, leading to high resource dependency and .

With artificial photosynthesis, mankind could utilize solar energy to bind carbon dioxide and produce hydrogen. Chemists from Würzburg and Seoul have taken this one step further: They have synthesized a stack of dyes that comes very close to the photosynthetic apparatus of plants. It absorbs light energy, uses it to separate charge carriers and transfers them quickly and efficiently in the stack.

Photosynthesis is a marvelous process: plants use it to produce and oxygen from the simple starting materials carbon dioxide and water. They draw the energy they need for this complex process from sunlight.

If humans could imitate photosynthesis, it would have many advantages. The free energy from the sun could be used to remove carbon dioxide from the atmosphere and use it to build carbohydrates and other useful substances. It would also be possible to produce hydrogen, as photosynthesis splits water into its components oxygen and hydrogen.

A research team led by Assistant Professor Shogo Mori and Professor Susumu Saito at Nagoya University has developed a method of artificial photosynthesis that uses sunlight and water to produce energy and valuable organic compounds, including pharmaceutical materials, from waste organic compounds. This achievement represents a significant step toward sustainable energy and chemical production.

The findings were published in Nature Communications.

“Artificial photosynthesis involves that mimic the way plants convert sunlight, water, and carbon dioxide into energy-rich glucose,” Saito explained. “Waste products, which are often produced by other processes, were not formed; instead, only energy and useful chemicals were created.”

Humans can do plenty, but plants have an ability we don’t: they make energy straight from sunlight, a superpower called photosynthesis. Yet new research shows that scientists are closing that gap.

Osaka Metropolitan University researchers have revealed the 3D structure of an artificial photosynthetic antenna protein complex, known as light-harvesting complex II (LHCII), and demonstrated that the artificial LHCII closely mirrors its natural counterpart. This discovery marks a significant step forward in understanding how plants harvest and manage , paving the way for future innovations in artificial .

The researchers, led by Associate Professor Ritsuko Fujii and then graduate student Soichiro Seki of the Graduate School of Science and Research Center for Artificial Photosynthesis, had their study published in PNAS Nexus.

Mankind is facing a central challenge: It must manage the transition to a sustainable and carbon dioxide-neutral energy economy.

Hydrogen is considered a promising alternative to fossil fuels. It can be produced from water using electricity. If the electricity comes from , it is called green . But it would be even more sustainable if hydrogen could be produced directly with the energy of sunlight.

In nature, light-driven water splitting takes place during photosynthesis in plants. Plants use a complex molecular apparatus for this, the so-called photosystem II. Mimicking its active center is a promising strategy for realizing the sustainable production of hydrogen. A team led by Professor Frank Würthner at the Institute of Organic Chemistry and the Center for Nanosystems Chemistry at Julius-Maximilians-Universität Würzburg (JMU) is working on this.

A team of researchers has made an advancement in the field of multifunctional energy harvesting. Their latest study advances in understanding the photovoltaic effect in ferroelectric crystals.

The article, “Study on Influence of AC Poling on Bulk Photovoltaic Effect in Pb(Mg1/3 Nb2/3)O3-PbTiO3 Single Crystals,” published in Advanced Electronic Materials, reports the team’s recent research results regarding improving the electric output of the bulk photovoltaic effect (BPVE) via manipulation of ferroelectric domains in oxide perovskite crystals.

In ordinary , the mechanism of harvesting the solar energy and then converting them into green electricity is based on the formation of p-n junctions of semiconductors. While the p-n junction has been invented for more than a century, widely used in the silicon industry nowadays, the BPVE is a more recently discovered physical phenomenon from the 1960s–1970s.