Toggle light / dark theme

Scientists create first programmable single-atom catalyst that adapts chemical activity

A research team at the Politecnico di Milano has developed an innovative single-atom catalyst capable of selectively adapting its chemical activity. This is a crucial step forward in sustainable chemistry and the design of more efficient and programmable industrial processes.

The study was published in the Journal of the American Chemical Society.

This achievement is novel in the field of single-atom catalysts. For the first time, scientists have demonstrated the possibility of designing a material that can selectively change its catalytic function depending on the chemical environment. It involves a sort of “molecular switch” that allows complex reactions to be performed more cleanly and efficiently, using less energy than conventional processes.

New imaging method reveals how light and heat generate electricity in nanomaterials

UC Riverside researchers have unveiled a powerful new imaging technique that exposes how cutting-edge materials used in solar panels and light sensors convert light into electricity—offering a path to better, faster, and more efficient devices.

The breakthrough, published in the journal Science Advances, could lead to improvements in solar energy systems and optical communications technology. The study title is “Deciphering photocurrent mechanisms at the nanoscale in van der Waals interfaces for enhanced optoelectronic applications.”

The research team, led by associate professors Ming Liu and Ruoxue Yan of UCR’s Bourns College of Engineering, developed a three-dimensional imaging method that distinguishes between two fundamental processes by which light is transformed into electric current in quantum materials.

Ateneo scientists make aluminum transparent by using tiny acid droplets

Transparent aluminum oxide (TAlOx), a real material despite its sci-fi name, is incredibly hard and resistant to scratches, making it perfect for protective coatings on electronics, optical sensors, and solar panels. On the sci-fi show Star Trek, it is even used for starship windows and spacefaring aquariums.

Current methods of making TAlOx are expensive and complicated, requiring high-powered lasers, vacuum chambers, or large vats of dangerous acids. That may change thanks to research co-authored by Filipino scientists from Ateneo de Manila University.

Instead of immersing entire sheets of metal into acidic solutions, the researchers applied microdroplets of acidic solution onto small aluminum surfaces and applied an electric current. Just two volts of electricity—barely more than what’s found in a single AA household flashlight battery—was all that was needed to transform the metal into glass-like TAlOx.

Google DeepMind says its new AI can map the entire planet with unprecedented accuracy

Google DeepMind unveils AlphaEarth Foundations, an AI system that processes satellite data 16x more efficiently to create detailed Earth maps for tracking deforestation, climate change, and environmental shifts.

Perovskite Under Pressure: A New Era in Light-Handling Materials

Perovskites have long captivated the interest of materials scientists and engineers for their remarkable potential in next-generation solar cells, LEDs, and optoelectronic devices. Now, a newly published study pushes the envelope even further by showing how carefully applied pressure can finely tune the light-handling properties of a 2D hybrid perovskite, marking a significant leap toward real-time structural control in photonic technologies.

The research, carried out using the Canadian Light Source (CLS) at the University of Saskatchewan and the Advanced Photon Source (APS) in Chicago, utilized ultrabright synchrotron radiation to observe how perovskite layers respond under pressure. The focus was a 2D Dion–Jacobson hybrid lead iodide perovskite with alternating organic and inorganic sheets—structures whose interaction defines how the material absorbs, emits, or modulates light.

Stitched for strength: The physics of jamming in stiff, knitted fabrics

School of Physics Associate Professor Elisabetta Matsumoto is unearthing the secrets of the centuries-old practice of knitting through experiments, models, and simulations. Her goal? Leveraging knitting for breakthroughs in advanced manufacturing—including more sustainable textiles, wearable electronics, and soft robotics.

Matsumoto, who is also a principal investigator at the International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM2) at Hiroshima University, is the corresponding author on a new study exploring the physics of ‘’—a phenomenon when soft or stretchy materials become rigid under low stress but soften under higher tension.

The study, “Pulling Apart the Mechanisms That Lead to Jammed Knitted Fabrics,” is published in Physical Review E, and also includes Georgia Tech Matsumoto Group graduate students Sarah Gonzalez and Alexander Cachine in addition to former postdoctoral fellow Michael Dimitriyev, who is now an assistant professor at Texas A&M University.

Researchers develop flexible fiber material for self-powered health-monitoring sensors

Could clothing monitor a person’s health in real time, because the clothing itself would be a self-powered sensor? A new material created through electrospinning, which is a process that draws out fibers using electricity, brings this possibility one step closer.

A team led by researchers at Penn State has developed a new fabrication approach that optimizes the internal structure of electrospun fibers to improve their performance in electronic applications. The team has published its findings in the Journal of Applied Physics.

This novel electrospinning approach could open the door to more efficient, flexible and scalable electronics for wearable sensors, health monitoring and sustainable energy harvesting, according to Guanchun Rui, a visiting postdoctoral student in the Department of Electrical Engineering and the Materials Research Institute and co-lead author of the study.

Chinese Scientists Develop Breakthrough Catalyst for Clean Propane Conversion

Scientists have pioneered a water- and light-driven method for converting propane at near-room temperature, opening the door to sustainable, low-energy catalysis. Propane dehydrogenation (PDH) is a chemical process that requires a large input of heat, typically needing temperatures above 600°C wh

Earth appears to be developing new never-before-seen human-made seasons, study finds

Diverse perspectives, especially those from Indigenous knowledge systems, can enhance our ability to respond to environmental changes. Integrating alternative time-keeping methods into mainstream practices could foster fairer and more effective solutions to environmental problems.

Seasons are more than just divisions of time — they connect us with nature. Finding synchrony with changing seasonal rhythms is essential for building a sustainable future.

This edited article is republished from The Conversation under a Creative Commons license. Read the original article.

Study uncovers technologically appealing trick used by microalgae to manipulate light

Skoltech researchers and their colleagues have uncovered an intricate light manipulation mechanism likely used by microscopic algae to boost photosynthesis.

By studying the interaction of light with the elaborately patterned silicon dioxide shells enclosing the , the team hopes to reveal principles that could eventually be leveraged in light detectors, bio-and chemical sensors, protective coatings against ultraviolet rays, , and other nature-inspired technology, right up to artificial photosynthesis systems using CO2 and water to make fuel.

The study was published in the journal Optica.

/* */