Toggle light / dark theme

Black metal could give a heavy boost to solar power generation

In the quest for energy independence, researchers have studied solar thermoelectric generators (STEGs) as a promising source of solar electricity generation. Unlike the photovoltaics currently used in most solar panels, STEGs can harness all kinds of thermal energy in addition to sunlight. The simple devices have hot and cold sides with semiconductor materials in between, and the difference in temperature between the sides generates electricity through a physical phenomenon known as the Seebeck effect.

But current STEGs have major efficiency limitations preventing them from being more widely adopted as a practical form of energy production. Right now, most solar thermoelectric generators convert less than 1% of sunlight into electricity, compared to roughly 20% for residential solar panel systems.

That gap in efficiency has been dramatically reduced through new techniques developed by researchers at the University of Rochester’s Institute of Optics.

Scientists Invent Plastic That Nature Eats 2,800 Feet Underwater

Scientists have unveiled a new biodegradable plastic that vanishes in one of the harshest environments on Earth—the deep sea.

In an experiment nearly 3,000 feet underwater, a bioengineered material called LAHB broke down while conventional plastics stayed intact. Deep-sea microbes not only colonized the plastic’s surface, but actively digested it using specialized enzymes, turning it into harmless byproducts. This breakthrough suggests a promising solution to the global plastic crisis, especially in oceans where most waste lingers for decades or centuries.

Global plastic waste problem still looms.

Next-generation solar cells could soon harvest indoor light for battery-free devices

An international team led by UCL researchers has developed durable new solar cells capable of efficiently harvesting energy from indoor light, meaning that devices such as keyboards, remote controls, alarms and sensors could soon be battery-free.

The team used a material called , which is increasingly used in outdoor solar panels, and unlike traditional silicon-based solar panels, has the potential to be used indoors as well as its composition can be adjusted to better absorb the specific wavelengths of indoor light.

A major drawback of perovskite, however, is that it contains tiny defects in its —known as traps—that can cause electrons to get stuck before their energy can be harnessed. These defects not only interrupt the flow of electricity but also contribute to the material’s degradation over time.

Microscopic imaging reveals how electric double layers form at battery nucleation sites

Electrochemical cells—or batteries, as a well-known example—are complex technologies that combine chemistry, physics, materials science and electronics. More than power sources for everything from smartphones to electric vehicles, they remain a strong motivation for scientific inquiry that seeks to fully understand their structure and evolution at the molecular level.

A team led by Yingjie Zhang, a professor of and engineering in The Grainger College of Engineering at the University of Illinois Urbana-Champaign, has completed the first investigation into a widely acknowledged but often overlooked aspect of : the nonuniformity of the liquid at the solid-liquid interfaces in the cells.

As the researchers report in the Proceedings of the National Academy of Sciences, microscopic imaging revealed that these interfacial structures, called electrical double layers (EDLs), tend to organize into specific configurations in response to chemical deposition on the of the solid. The paper is titled “Nucleation at solid–liquid interfaces is accompanied by the reconfiguration of electrical double layers.”

SpaceX’s Mars Breakthrough — What No One’s Talking About!

SpaceX is making significant progress towards establishing a human presence on Mars, with a major contract, advancements in technology, and plans for infrastructure development, potentially giving them a lead over competitors and raising questions about the future of space exploration and ownership ##

## Questions to inspire discussion.

Mars Exploration and Infrastructure.

🚀 Q: What is SpaceX’s breakthrough in Mars exploration? A: SpaceX’s Starship secured its first paying customer for Mars payloads: the Italian Space Agency, in a deal worth hundreds of millions of dollars.

🔬 Q: What experiments will the Italian Space Agency conduct on Mars? A: The payload includes plant growth, radiation, and local climate monitoring experiments, collecting data during the 6-month flight and on Mars’ surface.

🤖 Q: How will robots assist in Mars exploration? A: SpaceX plans to send 1,000–2,000 Optimus robots to Mars to fix rovers, run experiments, maintain equipment, and scout locations for future missions.

/* */