Toggle light / dark theme

Supercomputers decode the strange behavior of Enceladus’s plumes

Supercomputers are rewriting our understanding of Enceladus’ icy plumes and the mysterious ocean that may harbor life beneath them. Cutting-edge simulations show that Enceladus’ plumes are losing 20–40% less mass than earlier estimates suggested. The new models provide sharper insights into subsurface conditions that future landers may one day probe directly.

In the 17th century, astronomers Christiaan Huygens and Giovanni Cassini pointed some of the earliest telescopes at Saturn and made a surprising discovery. The bright structures around the planet were not solid extensions of the world itself, but separate rings formed from many thin, nested arcs.

Centuries later, NASA’s Cassini-Huygens (Cassini) mission carried that exploration into the space age. Starting in 2005, the spacecraft returned a flood of detailed images that reshaped scientists’ view of Saturn and its moons. One of the most dramatic findings came from Enceladus, a small icy moon where towering geysers shot material into space, creating a faint sub-ring around Saturn made of the ejected debris.

Diamond quantum sensors improve spatial resolution of MRI

This accomplishment breaks the previous record of 48 qubits set by Jülich scientists in 2019 on Japan’s K computer. The new result highlights the extraordinary capabilities of JUPITER and provides a powerful testbed for exploring and validating quantum algorithms.

Simulating quantum computers is essential for advancing future quantum technologies. These simulations let researchers check experimental findings and experiment with new algorithmic approaches long before quantum hardware becomes advanced enough to run them directly. Key examples include the Variational Quantum Eigensolver (VQE), which can analyze molecules and materials, and the Quantum Approximate Optimization Algorithm (QAOA), used to improve decision-making in fields such as logistics, finance, and artificial intelligence.

Recreating a quantum computer on conventional systems is extremely demanding. As the number of qubits grows, the number of possible quantum states rises at an exponential rate. Each added qubit doubles the amount of computing power and memory required.

Although a typical laptop can still simulate around 30 qubits, reaching 50 qubits requires about 2 petabytes of memory, which is roughly two million gigabytes. ‘Only the world’s largest supercomputers currently offer that much,’ says Prof. Kristel Michielsen, Director at the Jülich Supercomputing Centre. ‘This use case illustrates how closely progress in high-performance computing and quantum research are intertwined today.’

The simulation replicates the intricate quantum physics of a real processor in full detail. Every operation – such as applying a quantum gate – affects more than 2 quadrillion complex numerical values, a ‘2’ with 15 zeros. These values must be synchronized across thousands of computing nodes in order to precisely replicate the functioning of a real quantum processor.


The JUPITER supercomputer set a new milestone by simulating 50 qubits. New memory and compression innovations made this breakthrough possible. A team from the Jülich Supercomputing Centre, working with NVIDIA specialists, has achieved a major milestone in quantum research. For the first time, they successfully simulated a universal quantum computer with 50 qubits, using JUPITER, Europe’s first exascale supercomputer, which began operation at Forschungszentrum Jülich in September.

Rejuvenating the blood: New pharmacological strategy targets RhoA in hematopoietic stem cells

Aging is defined as the deterioration of function over time, and it is one of the main risk factors for numerous chronic diseases. Although aging is a complex phenomenon affecting the whole organism, it is proved that the solely manifestation of aging in the hematopoietic system affects the whole organism. Last September, Dr. M. Carolina Florian and her team revealed the significance of using blood stem cells to pharmacologically target aging of the whole body, thereby suggesting rejuvenating strategies that could extend healthspan and lifespan.

Now, in a Nature Aging, they propose rejuvenating aged blood stem cells by treating them with the drug Rhosin, a small molecule that inhibits RhoA, a protein that is highly activated in aged hematopoietic stem cells. This study combined in vivo and in vitro assays at IDIBELL together with innovative machine learning techniques by the Barcelona Institute for Global Health (ISGlobal), a center supported by the “la Caixa” Foundation, and the Barcelona Supercomputing Center.

Polymathic: Simulation is one of the cornerstone tools of modern science and engineering

Using simulation-based techniques, scientists can ask how their ideas, actions, and designs will interact with the physical world. Yet this power is not without costs. Cutting edge simulations can often take months of supercomputer time. Surrogate models and machine learning are promising alternatives for accelerating these workflows, but the data hunger of machine learning has limited their impact to data-rich domains. Over the last few years, researchers have sought to side-step this data dependence through the use of foundation models— large models pretrained on large amounts of data which can accelerate the learning process by transferring knowledge from similar inputs, but this is not without its own challenges.

To Meld A.I. With Supercomputers, National Labs Are Picking Up the Pace

For years, Rick Stevens, a computer scientist at Argonne National Laboratory, pushed the notion of transforming scientific computing with artificial intelligence.

But even as Mr. Stevens worked toward that goal, government labs like Argonne — created in 1946 and sponsored by the Department of Energy — often took five years or more to develop powerful supercomputers that can be used for A.I. research. Mr. Stevens watched as companies like Amazon, Microsoft and Elon Musk’s xAI made faster gains by installing large A.I. systems in a matter of months.

Quantum-centric supercomputing simulates supramolecular interactions

A team led by Cleveland Clinic’s Kenneth Merz, Ph.D., and IBM’s Antonio Mezzacapo, Ph.D., is developing quantum computing methods to simulate and study supramolecular processes that guide how entire molecules interact with each other.

In their study, published in Communications Physics, researchers focused on molecules’ noncovalent interactions, especially hydrogen bonding and hydrophobic species. These interactions, which involve attraction and repulsive forces between molecules or parts of the same molecule, play an important role in , membrane assembly and cell signaling.

Noncovalent molecular interactions involve an unknowable number of possible outcomes. Quantum computers with their immense computational power can easily complete these calculations, but conventional quantum computing methods can lack the accuracy of classical computers.

Supercomputer Models Revise Enceladus Ice Loss

“The mass flow rates from Enceladus are between 20 to 40 percent lower than what you find in the scientific literature,” said Dr. Arnaud Mahieux.


How much ice is Saturn’s moon, Enceladus, losing to space when it discharges its interior ocean? This is what a recent study published in the Journal of Geophysical Research: Planets hopes to address as a team of scientists investigated whether Enceladus’ plume environments, including discharge rates, temperatures, and ice particle sizes could be determined strictly from observational data. This study has the potential to help scientists develop new methods for exploring icy bodies, especially those like Enceladus that could harbor life within its liquid water ocean.

For the study, the researchers used a series of computer models to analyze data obtained from NASA’s now-retired Cassini spacecraft, which intentionally burned up in Saturn’s atmosphere in 2017 after running low on fuel. This was done to avoid potentially contaminating moons like Enceladus with microbes from Earth and interfere with potential life there. During its journey at Saturn and its many moons, Cassino both discovered and flew through the plumes of Enceladus, which are at the moon’s south pole and emit large quantities of water ice and other substances into space from its subsurface liquid water ocean. It’s the amount of water and ice these plumes discharge that have intrigued scientists, and the results were surprising.

/* */