Toggle light / dark theme

Stellar streams are long, thin filaments of orbiting galaxies, produced by the stretching action of tidal forces. For astronomers, observation of these structures could be crucial to test various galaxy formation models.

Located most likely some 420 light-years away in the Milky Way’s disk, Pisces–Eridanus (or Psc–Eri for short) is a cylindrically shaped stream of almost 1,400 identified stars distributed across about 2,300 light-years. Due to its relative proximity and , it is perceived as an excellent laboratory to study and test theories of chemical and dynamical evolution of stellar systems.

I frankly think this of exotic species unknown but it has exotic movement.


With over 4,000 exoplanets found so far, it takes a particularly interesting one to stand out.

LHS 1815b literally does that. While most planet-bearing stars we find orbit the Milky Way in the plane of its disk, this planet’s host star’s orbit takes it well out of that plane, flying way up over the galaxy and way down below it over time, giving it a pretty interesting view of our galaxy.

First, the planet: It was found in TESS data, the Transiting Exoplanet Survey Satellite. This mission is surveying the entire sky, looking for planets around brighter stars. These tend to be closer to us, so TESS is finding planets that are in our neighborhood, galactically speaking.

Astronomers know that much about how neutron stars are born. Yet exactly what happens afterwards, inside these ultra-dense cores, remains a mystery. Some researchers theorize that neutrons might dominate all the way down to the centre. Others hypothesize that the incredible pressure compacts the material into more exotic particles or states that squish and deform in unusual ways.

Now, after decades of speculation, researchers are getting closer to solving the enigma, in part thanks to an instrument on the International Space Station called the Neutron Star Interior Composition Explorer (NICER).


These stellar remnants are some of the Universe’s most enigmatic objects — and they are finally starting to give up their secrets.

Magnetars are neutron stars endowed with the strongest magnetic fields observed in the universe, but their origin remains controversial. In a study published in Science Advances, a team of scientists from CEA, Saclay, the Max Planck Institute for Astrophysics (MPA), and the Institut de Physique du Globe de Paris developed a new and unprecedentedly detailed computer model that can explain the genesis of these gigantic fields through the amplification of pre-existing weak fields when rapidly rotating neutron stars are born in collapsing massive stars. The work opens new avenues to understand the most powerful and most luminous explosions of such stars.

Magnetars: what are they?

Neutron stars are compact objects containing one to two within a radius of about 12 kilometers. Among them, magnetars are characterized by eruptive emission of X-rays and gamma rays. The energy associated with these bursts of intense radiation is probably related to ultra–. Magnetars should thus spin down faster than other neutron stars due to enhanced magnetic braking, and measurements of their rotation period evolution have confirmed this scenario. We thus infer that magnetars have a dipole magnetic field of the order of 1015 Gauss (G), i.e., up to 1000 times stronger than typical neutron stars! While the existence of these tremendous magnetic fields is now well established, their origin remains controversial.