The green light is given to the near-billion-euro space observatory that will study far-off worlds.
Category: space – Page 658
With each new crew launch from the U.S. comes the inevitable questions: Why all the weather rules? What are the vehicle’s abort modes and how will it perform a launch abort and aim itself to a predetermined location in the Atlantic Ocean stretching from the Kennedy Space Center across to the western Irish coast?
The Crew-1 mission of SpaceX’s Dragon 2 capsule is contending with these questions, with its launch already delayed from Saturday because of weather. The mission is currently set to launch at 19:27 EST (00:27 UTC) on Sunday, 15 November (Monday, 16 November UTC) from LC-39A in Florida to bring Mike Hopkins, Victor Glover, Shannon Walker, and Soichi Noguchi to the International Space Station.
Why do NASA, the 45th Space Wing of the Space Force, their safety officers, and all launch providers make such a big deal about the weather? Who cares if it’s raining 18 km from the pad when the safety rules say rain cannot be closer than 18.5 km? Isn’t that close enough?
It seems the weather on Mars is a bit more windy than expected.
Martian winds could be strong enough after all to move giant waves of sand on the Red Planet.
Solar power stations in space that beam ‘emission-free electricity’ down to Earth could soon be a reality thanks to a UK government funded project.
Above the Earth there are no clouds and no day or night that could obstruct the sun’s ray – making a space solar station a constant zero carbon power source.
The UK government commissioned new research into the concept of space-based solar power (SBSP) stations as a way to meet the Earth’s growing energy needs.
Sophomore math major Xzavier Herbert was never much into science fiction or the space program, but his skills in pure mathematics seem to keep drawing him into NASA’s orbit.
With an interest in representation theory, Herbert spent the summer virtually at NASA, studying connections between classical information theory and quantum information theory, each of which corresponds to a different set of laws: classical physics and quantum mechanics.
“What I’m doing involves how representation theory allows us to draw a direct analog from classical information theory to quantum information theory,” Herbert says. “It turns out that there is a mathematical way of justifying how these are related.”
HSC J023336-053022, a massive galaxy cluster located approximately 4 billion light-years away from Earth, is heating the material within it to hundreds of millions of degrees Celsius — over 25 times hotter than the core of the Sun.
Ira Pastor, ideaXme life sciences ambassador and CEO Bioquark interviews Dr. Michelle Francl the Frank B. Mallory Professor of Chemistry, at Bryn Mawr College, and an adjunct scholar of the Vatican Observatory.
Ira Pastor comments:
Today, we have another fascinating guest working at the intersection of cutting edge science and spirituality.
Dr. Michelle Francl is the Frank B. Mallory Professor of Chemistry, at Bryn Mawr College, a distinguished women’s college in the suburbs of Philadephia, as well as an adjunct scholar of the Vatican Observatory.
Dr. Francl has a Ph.D. in chemistry from University of California, Irvine, did her post-doctoral research at Princeton University, and has taught physical chemistry, general chemistry, and mathematical modeling at Bryn Mawr College since 1986. In addition Dr. Francl has research interests in theoretical and computational chemistry, structures of topologically intriguing molecules (molecules with weird shapes), history and sociology of science, and the rhetoric of science.
Dr. Francl is noted for developing new methodologies in computational chemistry, is on a list of the 1,000 most cited chemists, is a member of the editorial board for the Journal of Molecular Graphics and Modelling, is active in the American Chemical Society, and the author of “The Survival Guide for Physical Chemistry”. In 1994, she was awarded the Christian R. and Mary F. Lindback Award by Bryn Mawr College for excellence in teaching.
Mars’ dust storms have repeatedly triggered rapid water loss from its upper atmosphere over the eons, NASA’s MAVEN orbiter finds.
China Launches 6G Satellite and Nokia seals the deal with NASA for 4G moon network.
On Earth, amethysts can form when gas bubbles in lava cool under the right conditions. In space, a dying star with a mass similar to the Sun is capable of producing a structure on par with the appeal of these beautiful gems.
As stars like the Sun run through their fuel, they cast off their outer layers and the core of the star shrinks. Using NASA’s Chandra X-ray Observatory, astronomers have found a bubble of ultra-hot gas at the center of one of these expiring stars, a planetary nebula in our galaxy called IC 4593. At a distance of about 7,800 light years from Earth, IC 4593 is the most distant planetary nebula yet detected with Chandra.
This new image of IC 4593 has X-rays from Chandra in purple, invoking similarities to amethysts found in geodes around the globe. The bubble detected by Chandra is from gas that has been heated to over a million degrees. These high temperatures were likely generated by material that blew away from the shrunken core of the star and crashed into gas that had previously been ejected by the star.